A Rigidity Property of Complete Systems of Mutually Unbiased Bases

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
M. Matolcsi, M. Weiner
{"title":"A Rigidity Property of Complete Systems of Mutually Unbiased Bases","authors":"M. Matolcsi, M. Weiner","doi":"10.1142/S1230161221500128","DOIUrl":null,"url":null,"abstract":"Suppose that for some unit vectors [Formula: see text] in [Formula: see text] we have that for any [Formula: see text]   [Formula: see text] is either orthogonal to [Formula: see text] or [Formula: see text] (i.e., [Formula: see text] and [Formula: see text] are unbiased). We prove that if [Formula: see text], then these vectors necessarily form a complete system of mutually unbiased bases, that is, they can be arranged into [Formula: see text] orthonormal bases, all being mutually unbiased with respect to each other.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"163 1","pages":"2150012:1-2150012:6"},"PeriodicalIF":1.3000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S1230161221500128","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that for some unit vectors [Formula: see text] in [Formula: see text] we have that for any [Formula: see text]   [Formula: see text] is either orthogonal to [Formula: see text] or [Formula: see text] (i.e., [Formula: see text] and [Formula: see text] are unbiased). We prove that if [Formula: see text], then these vectors necessarily form a complete system of mutually unbiased bases, that is, they can be arranged into [Formula: see text] orthonormal bases, all being mutually unbiased with respect to each other.
互无偏基完备系统的刚性性质
假设对于[公式:见文]中的某些单位向量[公式:见文],我们有对于任何[公式:见文][公式:见文][公式:见文]正交于[公式:见文]或[公式:见文](即,[公式:见文]和[公式:见文]是无偏的)。我们证明了如果[公式:见文],那么这些向量必然形成一个完备的互无偏基系统,即它们可以排列成[公式:见文]正交基,它们彼此互为无偏基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信