Moving in the Right Direction: A Regularization for Deep Metric Learning

D. Mohan, Nishant Sankaran, Dennis Fedorishin, S. Setlur, V. Govindaraju
{"title":"Moving in the Right Direction: A Regularization for Deep Metric Learning","authors":"D. Mohan, Nishant Sankaran, Dennis Fedorishin, S. Setlur, V. Govindaraju","doi":"10.1109/CVPR42600.2020.01460","DOIUrl":null,"url":null,"abstract":"Deep metric learning leverages carefully designed sampling strategies and loss functions that aid in optimizing the generation of a discriminable embedding space. While effective sampling of pairs is critical for shaping the metric space during training, the relative interactions between pairs, and consequently the forces exerted on these pairs that direct their displacement in the embedding space can significantly impact the formation of well separated clusters. In this work, we identify a shortcoming of existing loss formulations which fail to consider more optimal directions of pair displacements as another criterion for optimization. We propose a novel direction regularization to explicitly account for the layout of sampled pairs and attempt to introduce orthogonality in the representations. The proposed regularization is easily integrated into existing loss functions providing considerable performance improvements. We experimentally validate our hypothesis on the Cars-196, CUB-200 and InShop datasets and outperform existing methods to yield state-of-the-art results on these datasets.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"61 1","pages":"14579-14587"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.01460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Deep metric learning leverages carefully designed sampling strategies and loss functions that aid in optimizing the generation of a discriminable embedding space. While effective sampling of pairs is critical for shaping the metric space during training, the relative interactions between pairs, and consequently the forces exerted on these pairs that direct their displacement in the embedding space can significantly impact the formation of well separated clusters. In this work, we identify a shortcoming of existing loss formulations which fail to consider more optimal directions of pair displacements as another criterion for optimization. We propose a novel direction regularization to explicitly account for the layout of sampled pairs and attempt to introduce orthogonality in the representations. The proposed regularization is easily integrated into existing loss functions providing considerable performance improvements. We experimentally validate our hypothesis on the Cars-196, CUB-200 and InShop datasets and outperform existing methods to yield state-of-the-art results on these datasets.
向正确的方向前进:深度度量学习的正则化
深度度量学习利用精心设计的采样策略和损失函数,帮助优化可判别嵌入空间的生成。虽然在训练过程中对成对的有效采样对于形成度量空间至关重要,但对之间的相对相互作用以及施加在这些对上的力(这些力指导它们在嵌入空间中的位移)可以显著影响分离良好的簇的形成。在这项工作中,我们发现了现有损失公式的一个缺点,即没有考虑更优的对位移方向作为优化的另一个准则。我们提出了一种新的方向正则化来明确地解释采样对的布局,并尝试在表示中引入正交性。提出的正则化很容易集成到现有的损失函数中,提供了相当大的性能改进。我们在Cars-196、CUB-200和InShop数据集上通过实验验证了我们的假设,并超越了现有方法,在这些数据集上产生了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信