Fatigue life of solder bumps in a system in package: relating power cycling to thermal cycling

J. Beijer, M. Jansen, G. Janssen, J. Bielen, E. Tijssen
{"title":"Fatigue life of solder bumps in a system in package: relating power cycling to thermal cycling","authors":"J. Beijer, M. Jansen, G. Janssen, J. Bielen, E. Tijssen","doi":"10.1109/ESIME.2006.1643987","DOIUrl":null,"url":null,"abstract":"Usually the mechanical reliability of electronic packages is qualified by temperature cycle tests (TCT). However this is a more or less isothermal test, while in operating condition temperatures can have a non-uniform distribution, because thermal transient effects are present. This effect can play an important role in packages that generate heat, like the module with power amplifier that we studied in this work. The transient thermal loading in the active areas in the flip chip power amplifier causes thermo-mechanical stresses that may cause fatigue fractures in the solder bumps and eventually failure of the module. In this paper we simulate the operating conditions and a TCT. For this purpose a FEA model was created with a new way of working to handle major challenges regarding the large differences in length and time scale. The required element size in the bumps was approximately a factor 200 smaller than that required in the PCB. Furthermore the combination of the heat penetration depth of the short (milliseconds) power pulses together with the heating time of approximately half an hour for the complete module makes conventional simulation methods very time consuming. The new method showed to be accurate and efficient. The simulation results show that in TCT the loading is very different than in power cycling. The critical bump was in power cycling in the middle of the heating area, while in TCT is located at the corner. We have also calculated an acceleration factor for the TCT test","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"34 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1643987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Usually the mechanical reliability of electronic packages is qualified by temperature cycle tests (TCT). However this is a more or less isothermal test, while in operating condition temperatures can have a non-uniform distribution, because thermal transient effects are present. This effect can play an important role in packages that generate heat, like the module with power amplifier that we studied in this work. The transient thermal loading in the active areas in the flip chip power amplifier causes thermo-mechanical stresses that may cause fatigue fractures in the solder bumps and eventually failure of the module. In this paper we simulate the operating conditions and a TCT. For this purpose a FEA model was created with a new way of working to handle major challenges regarding the large differences in length and time scale. The required element size in the bumps was approximately a factor 200 smaller than that required in the PCB. Furthermore the combination of the heat penetration depth of the short (milliseconds) power pulses together with the heating time of approximately half an hour for the complete module makes conventional simulation methods very time consuming. The new method showed to be accurate and efficient. The simulation results show that in TCT the loading is very different than in power cycling. The critical bump was in power cycling in the middle of the heating area, while in TCT is located at the corner. We have also calculated an acceleration factor for the TCT test
封装系统中焊点的疲劳寿命:功率循环与热循环的关系
电子封装的机械可靠性通常是通过温度循环试验(TCT)来确定的。然而,这是一个或多或少的等温试验,而在工作条件下,由于存在热瞬态效应,温度可能具有不均匀分布。这种效应可以在产生热量的封装中发挥重要作用,例如我们在本工作中研究的带有功率放大器的模块。倒装芯片功率放大器有源区域的瞬态热载荷会产生热机械应力,可能导致焊料凸起处的疲劳断裂,最终导致模块失效。本文对TCT的工作条件进行了仿真。为此,创建了一个FEA模型,并采用一种新的工作方式来处理有关长度和时间尺度的巨大差异的主要挑战。凸起中所需的元件尺寸大约比PCB中所需的元件尺寸小200倍。此外,短功率脉冲的热穿透深度(毫秒级)加上整个模块大约半小时的加热时间,使得传统的模拟方法非常耗时。结果表明,该方法准确、高效。仿真结果表明,TCT的载荷与功率循环的载荷有很大的不同。临界碰撞发生在加热区域中部的功率循环,而TCT发生在角落。我们还计算了TCT测试的加速因子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
145
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信