Jing Dong, Chenlu Li, Dujuan Dai, S. Yao, Sen Li, Qichao Zhou
{"title":"Seasonal succession of phytoplankton functional groups in Lake Fuxian and its driving factors","authors":"Jing Dong, Chenlu Li, Dujuan Dai, S. Yao, Sen Li, Qichao Zhou","doi":"10.1051/limn/2019023","DOIUrl":null,"url":null,"abstract":"The concept of phytoplankton functional groups was proposed based on data from numerous European lakes and has been widely used in lakes, reservoirs, rivers worldwide. However, the application of this concept to subtropical plateau lakes has rarely been reported. In this study, 16 sampling sites were selected across the entirety of Lake Fuxian, Yunnan, China. Eighteen phytoplankton functional groups (F, G, J, X2, X1,T, P, MP, D, C, H1, LO, S1, M, Y, E, W1 and W2) were classified according to the investigation of surface water and gradient depth samples. Nine of these groups, namely LO, H1, C, MP, P, T, X1, J and F, were identified as dominant species (>5% total biomass). Furthermore, LO, H1 and T were considered predominant (accounting for the maximum percentage of biomass in each month). The sampling showed that the seasonal succession of predominant assemblages in surface water was T (October) to H1 (January) to H1 (April) to Lo (July) and T+Lo (October) to T (January) to H1 (April) to Lo (July) in the gradient depth water. Redundancy analysis (RDA) combined with the indicator function of the phytoplankton groups suggested that WT and TN/TP were important factors in driving the succession of predominant assemblages all year around.","PeriodicalId":7903,"journal":{"name":"Annales De Limnologie-international Journal of Limnology","volume":"60 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Limnologie-international Journal of Limnology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1051/limn/2019023","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The concept of phytoplankton functional groups was proposed based on data from numerous European lakes and has been widely used in lakes, reservoirs, rivers worldwide. However, the application of this concept to subtropical plateau lakes has rarely been reported. In this study, 16 sampling sites were selected across the entirety of Lake Fuxian, Yunnan, China. Eighteen phytoplankton functional groups (F, G, J, X2, X1,T, P, MP, D, C, H1, LO, S1, M, Y, E, W1 and W2) were classified according to the investigation of surface water and gradient depth samples. Nine of these groups, namely LO, H1, C, MP, P, T, X1, J and F, were identified as dominant species (>5% total biomass). Furthermore, LO, H1 and T were considered predominant (accounting for the maximum percentage of biomass in each month). The sampling showed that the seasonal succession of predominant assemblages in surface water was T (October) to H1 (January) to H1 (April) to Lo (July) and T+Lo (October) to T (January) to H1 (April) to Lo (July) in the gradient depth water. Redundancy analysis (RDA) combined with the indicator function of the phytoplankton groups suggested that WT and TN/TP were important factors in driving the succession of predominant assemblages all year around.
期刊介绍:
Annales de Limnologie - International Journal of Limnology publishes papers on the ecology of freshwater systems, ranging from studies of aquatic organisms, physical and chemical works which relate to the biological environment, to ecological applications and frameworks for water management directives.
Main topics: Ecology of freshwater systems ; biodiversity, taxonomy, distribution patterns in space and time, biology of animals and plants ; experimental and conceptual studies which integrate laboratory and/or field work on physiology, population dynamics, biogeochemistry and nutrient dynamics, management, mathematical modelling ; techniques for sampling and chemical analyses, ecological applications, procedures which provide frameworks for environmental legislation.