D-module approach to Liouville's Theorem for difference operators

Q4 Mathematics
Kam Hang Cheng, Y. Chiang, A. Ching
{"title":"D-module approach to Liouville's Theorem for difference operators","authors":"Kam Hang Cheng, Y. Chiang, A. Ching","doi":"10.53733/187","DOIUrl":null,"url":null,"abstract":"We establish analogues of Liouville's theorem in the complex function theory, with the differential operator replaced by various difference operators. This is done generally by the extraction of (formal) Taylor coefficients using a residue map which measures the obstruction having local \"anti-derivative\". The residue map is based on a Weyl algebra or $q$-Weyl algebra structure satisfied by each corresponding operator. This explains the different senses of \"boundedness\" required by the respective analogues of Liouville's theorem in this article.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We establish analogues of Liouville's theorem in the complex function theory, with the differential operator replaced by various difference operators. This is done generally by the extraction of (formal) Taylor coefficients using a residue map which measures the obstruction having local "anti-derivative". The residue map is based on a Weyl algebra or $q$-Weyl algebra structure satisfied by each corresponding operator. This explains the different senses of "boundedness" required by the respective analogues of Liouville's theorem in this article.
差分算子Liouville定理的d模方法
我们建立了复变函数理论中刘维尔定理的类似物,用不同的差分算子代替微分算子。这通常是通过使用残差映射提取(正式的)泰勒系数来完成的,残差映射测量具有局部“不定积分”的障碍物。残差映射基于一个Weyl代数或$q$-Weyl代数结构,每个相应的算子都满足该Weyl代数结构。这就解释了本文中刘维尔定理的不同类比所要求的不同意义上的“有界性”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信