Dialogue History Matters! Personalized Response Selection in Multi-Turn Retrieval-Based Chatbots

Juntao Li, Chang Liu, Chongyang Tao, Zhangming Chan, Dongyan Zhao, Min Zhang, Rui Yan
{"title":"Dialogue History Matters! Personalized Response Selection in Multi-Turn Retrieval-Based Chatbots","authors":"Juntao Li, Chang Liu, Chongyang Tao, Zhangming Chan, Dongyan Zhao, Min Zhang, Rui Yan","doi":"10.1145/3453183","DOIUrl":null,"url":null,"abstract":"Existing multi-turn context-response matching methods mainly concentrate on obtaining multi-level and multi-dimension representations and better interactions between context utterances and response. However, in real-place conversation scenarios, whether a response candidate is suitable not only counts on the given dialogue context but also other backgrounds, e.g., wording habits, user-specific dialogue history content. To fill the gap between these up-to-date methods and the real-world applications, we incorporate user-specific dialogue history into the response selection and propose a personalized hybrid matching network (PHMN). Our contributions are two-fold: (1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information; (2) we perform hybrid representation learning on context-response utterances and explicitly incorporate a customized attention mechanism to extract vital information from context-response interactions so as to improve the accuracy of matching. We evaluate our model on two large datasets with user identification, i.e., personalized Ubuntu dialogue Corpus (P-Ubuntu) and personalized Weibo dataset (P-Weibo). Experimental results confirm that our method significantly outperforms several strong models by combining personalized attention, wording behaviors, and hybrid representation learning.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"6 1","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Existing multi-turn context-response matching methods mainly concentrate on obtaining multi-level and multi-dimension representations and better interactions between context utterances and response. However, in real-place conversation scenarios, whether a response candidate is suitable not only counts on the given dialogue context but also other backgrounds, e.g., wording habits, user-specific dialogue history content. To fill the gap between these up-to-date methods and the real-world applications, we incorporate user-specific dialogue history into the response selection and propose a personalized hybrid matching network (PHMN). Our contributions are two-fold: (1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information; (2) we perform hybrid representation learning on context-response utterances and explicitly incorporate a customized attention mechanism to extract vital information from context-response interactions so as to improve the accuracy of matching. We evaluate our model on two large datasets with user identification, i.e., personalized Ubuntu dialogue Corpus (P-Ubuntu) and personalized Weibo dataset (P-Weibo). Experimental results confirm that our method significantly outperforms several strong models by combining personalized attention, wording behaviors, and hybrid representation learning.
历史很重要!基于多回合检索的聊天机器人个性化响应选择
现有的多回合上下文-响应匹配方法主要集中在获取多层次、多维度的表征以及上下文话语与响应之间更好的交互。然而,在真实的对话场景中,一个候选者是否合适不仅取决于给定的对话上下文,还取决于其他背景,例如措辞习惯、用户特定的对话历史内容。为了填补这些最新方法与实际应用之间的差距,我们将用户特定的对话历史纳入响应选择,并提出了个性化的混合匹配网络(PHMN)。我们的贡献有两个方面:(1)我们的模型从用户特定的对话历史中提取个性化的措辞行为作为额外的匹配信息;(2)对语境-反应话语进行混合表征学习,明确引入自定义注意机制,从语境-反应交互中提取重要信息,提高匹配精度。我们在两个具有用户识别的大型数据集上评估我们的模型,即个性化Ubuntu对话语料库(P-Ubuntu)和个性化微博数据集(P-Weibo)。实验结果证实,我们的方法通过结合个性化注意力、措辞行为和混合表征学习,显著优于几种强大的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信