Green’s Function Solution of Non-Homogenous Regular Sturm-Liouville Problem

A. A. Hassana
{"title":"Green’s Function Solution of Non-Homogenous Regular Sturm-Liouville Problem","authors":"A. A. Hassana","doi":"10.4172/2168-9679.1000362","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method called exp(−I•(ξ)) fractional expansion method to seek traveling wave solutions of the nonlinear fractional Sharma-Tasso-Olver equation. The result reveals that the method together with the new fractional ordinary differential equation is a very ini¬‚uential and effective tool for solving nonlinear fractional partial differential equations in mathematical physics and engineering. The obtained solutions have been articulated by the hyperbolic functions, trigonometric functions and rational functions with arbitrary constants","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a new method called exp(−I•(ξ)) fractional expansion method to seek traveling wave solutions of the nonlinear fractional Sharma-Tasso-Olver equation. The result reveals that the method together with the new fractional ordinary differential equation is a very ini¬‚uential and effective tool for solving nonlinear fractional partial differential equations in mathematical physics and engineering. The obtained solutions have been articulated by the hyperbolic functions, trigonometric functions and rational functions with arbitrary constants
非齐次正则Sturm-Liouville问题的Green函数解
本文提出了一种新的求非线性分数阶Sharma-Tasso-Olver方程行波解的方法——exp(−I _ (ξ))分数阶展开法。结果表明,该方法与新的分数阶常微分方程是求解数学物理和工程中非线性分数阶偏微分方程的一个非常重要和有效的工具。得到的解用双曲函数、三角函数和任意常数的有理函数表示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信