Effect of Cooling Conditions, Retrofitting on Strength of Concrete Subjected to Elevated Temperature

Q3 Engineering
S. B. Kharmale, Pramod S. Sathe, Y. Kolekar
{"title":"Effect of Cooling Conditions, Retrofitting on Strength of Concrete Subjected to Elevated Temperature","authors":"S. B. Kharmale, Pramod S. Sathe, Y. Kolekar","doi":"10.28991/cej-2023-09-07-013","DOIUrl":null,"url":null,"abstract":"Concrete has a high degree of fire resistance at moderate temperatures. High temperatures, however, cause concrete to lose its stiffness and strength. The effects of cooling techniques and retrofitting on the strength of concrete exposed to high temperatures have not been synchronized in previous studies. This experimental research aims to evaluate the effect of cooling conditions and the effectiveness of retrofitting concrete subjected to elevated temperatures. Four types of concrete: M 20 normal concrete (NC); M 20 metakaolin concrete (MC); M 40 standard concrete (SC); and M 40 self-compacting concrete (SCC) are considered in this study. A total of 864 samples consisting of cube, beam, and cylinder specimens are subjected to sustained elevated temperatures of 400oC, 600oC, and 800oC for 2 hours rating. The weight and strength of half of the heat-damaged samples are assessed following natural air cooling (NAC) and water jet cooling (WJC). The remaining 50% of samples retrofitted with carbon fiber reinforced polymer (CFRP) are tested to evaluate the upgraded strength. The experimental findings demonstrate that water jet cooling (WJC) causes more strength degradation, and CFRP proves to be effective in restoring the strength of heat-deteriorated specimens. Overall, self-compacting concrete (SCC) has shown high resistance to elevated temperatures. Doi: 10.28991/CEJ-2023-09-07-013 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-07-013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete has a high degree of fire resistance at moderate temperatures. High temperatures, however, cause concrete to lose its stiffness and strength. The effects of cooling techniques and retrofitting on the strength of concrete exposed to high temperatures have not been synchronized in previous studies. This experimental research aims to evaluate the effect of cooling conditions and the effectiveness of retrofitting concrete subjected to elevated temperatures. Four types of concrete: M 20 normal concrete (NC); M 20 metakaolin concrete (MC); M 40 standard concrete (SC); and M 40 self-compacting concrete (SCC) are considered in this study. A total of 864 samples consisting of cube, beam, and cylinder specimens are subjected to sustained elevated temperatures of 400oC, 600oC, and 800oC for 2 hours rating. The weight and strength of half of the heat-damaged samples are assessed following natural air cooling (NAC) and water jet cooling (WJC). The remaining 50% of samples retrofitted with carbon fiber reinforced polymer (CFRP) are tested to evaluate the upgraded strength. The experimental findings demonstrate that water jet cooling (WJC) causes more strength degradation, and CFRP proves to be effective in restoring the strength of heat-deteriorated specimens. Overall, self-compacting concrete (SCC) has shown high resistance to elevated temperatures. Doi: 10.28991/CEJ-2023-09-07-013 Full Text: PDF
冷却条件、改造对高温混凝土强度的影响
混凝土在中等温度下具有高度的耐火性。然而,高温会使混凝土失去刚度和强度。在以前的研究中,冷却技术和改造对高温下混凝土强度的影响并没有同步。本实验研究旨在评估冷却条件的影响和混凝土在高温下的改造效果。四种混凝土:m20普通混凝土(NC);m20偏高岭土混凝土;m40标准混凝土(SC);和m40自密实混凝土(SCC)在本研究中考虑。共有864个样品,包括立方体、梁和圆柱体样品,在400℃、600℃和800℃的高温下持续2小时。在自然空气冷却(NAC)和喷水冷却(WJC)后,对一半热损伤样品的重量和强度进行了评估。其余50%的碳纤维增强聚合物(CFRP)改造后的样品进行测试,以评估升级后的强度。试验结果表明,水射流冷却(WJC)会导致更多的强度退化,CFRP对热变质试件的强度恢复是有效的。总体而言,自密实混凝土(SCC)具有较高的耐高温性能。Doi: 10.28991/CEJ-2023-09-07-013全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信