An additivity formula for the strict global dimension of C(Ω)

S. B. Tabaldyev
{"title":"An additivity formula for the strict global dimension of C(Ω)","authors":"S. B. Tabaldyev","doi":"10.2478/s11533-013-0350-5","DOIUrl":null,"url":null,"abstract":"Let A be a unital strict Banach algebra, and let K+ be the one-point compactification of a discrete topological space K. Denote by the weak tensor product of the algebra A and C(K+), the algebra of continuous functions on K+. We prove that if K has sufficiently large cardinality (depending on A), then the strict global dimension is equal to .","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"7 1","pages":"470-475"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0350-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a unital strict Banach algebra, and let K+ be the one-point compactification of a discrete topological space K. Denote by the weak tensor product of the algebra A and C(K+), the algebra of continuous functions on K+. We prove that if K has sufficiently large cardinality (depending on A), then the strict global dimension is equal to .
C的严格全局维数的可加性公式(Ω)
设A是一个一元严格的Banach代数,设K+是一个离散拓扑空间K的一点紧化。用代数A与C(K+)的弱张量积表示K+上连续函数的代数。我们证明如果K有足够大的基数(取决于A),那么严格全局维数等于。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信