Randomized redundant DCT: efficient denoising by using random subsampling of DCT patches

Shu Fujita, Norishige Fukushima, M. Kimura, Y. Ishibashi
{"title":"Randomized redundant DCT: efficient denoising by using random subsampling of DCT patches","authors":"Shu Fujita, Norishige Fukushima, M. Kimura, Y. Ishibashi","doi":"10.1145/2820903.2820923","DOIUrl":null,"url":null,"abstract":"j In this paper, we propose an acceleration method for image denoising with a redundant discrete cosine transform (R-DCT). Image denoising is essential for image processing, and its efficiency is important for graphics applications. R-DCT with a hard-thresholding or shrinkage method can perform denoising while keeping detail textures. Moreover, the method is computationally efficient compared with state-of-the-art denoising methods, such as BM3D. The computational cost, however, is still insufficient for real-time processing; hence, we accelerate the method by using randomized subsampling of DCT patches. Experimental results show that our method can accelerate the processing while the degradation of denoising performance is a little.","PeriodicalId":21720,"journal":{"name":"SIGGRAPH Asia 2015 Technical Briefs","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2015 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2820903.2820923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

j In this paper, we propose an acceleration method for image denoising with a redundant discrete cosine transform (R-DCT). Image denoising is essential for image processing, and its efficiency is important for graphics applications. R-DCT with a hard-thresholding or shrinkage method can perform denoising while keeping detail textures. Moreover, the method is computationally efficient compared with state-of-the-art denoising methods, such as BM3D. The computational cost, however, is still insufficient for real-time processing; hence, we accelerate the method by using randomized subsampling of DCT patches. Experimental results show that our method can accelerate the processing while the degradation of denoising performance is a little.
随机冗余DCT:利用DCT patch的随机子采样进行高效去噪
在本文中,我们提出了一种用冗余离散余弦变换(R-DCT)进行图像去噪的加速方法。图像去噪是图像处理的基础,其效率对图形应用至关重要。采用硬阈值或收缩方法的R-DCT可以在保留细节纹理的同时进行去噪。此外,与BM3D等最先进的去噪方法相比,该方法的计算效率更高。然而,计算成本仍然不足以实现实时处理;因此,我们通过对DCT patch进行随机抽样来加速该方法。实验结果表明,该方法可以加快处理速度,但去噪性能下降较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信