Forecasting Short-Term Solar PV Using Hierarchical Clustering and Cascade Model

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Ben Wang, Kun-Ming Yu, Nattawat Sodsong, Ken H. Chuang
{"title":"Forecasting Short-Term Solar PV Using Hierarchical Clustering and Cascade Model","authors":"Ben Wang, Kun-Ming Yu, Nattawat Sodsong, Ken H. Chuang","doi":"10.4018/ijghpc.316154","DOIUrl":null,"url":null,"abstract":"With the large-scale deployment of solar PV installations, managing the efficiency of the generation system became essential. Generally, the power output is heavily influenced by solar irradiance and sky conditions which are consistently changing. Thus, the ability to accurately forecast the solar PV power is critical for optimizing the generation system, estimating revenue, sustaining profits, and ensuring the quality of service. In this paper, the authors propose a solar PV forecasting model using multiple blocks of GRUs and RNN in a cascade model combined with hierarchical clustering to improve the overall prediction accuracy of solar PV forecast. This proposed model is a combination of hierarchical clustering, the Pearson correlation coefficient for feature selection, and the cascade model with GRU layer from k-means clustering and hierarchical clustering. These results, which are evaluated using NRMSE, show that hierarchical clustering is more suitable for solar PV forecast than k-means clustering.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"25 1","pages":"1-21"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.316154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With the large-scale deployment of solar PV installations, managing the efficiency of the generation system became essential. Generally, the power output is heavily influenced by solar irradiance and sky conditions which are consistently changing. Thus, the ability to accurately forecast the solar PV power is critical for optimizing the generation system, estimating revenue, sustaining profits, and ensuring the quality of service. In this paper, the authors propose a solar PV forecasting model using multiple blocks of GRUs and RNN in a cascade model combined with hierarchical clustering to improve the overall prediction accuracy of solar PV forecast. This proposed model is a combination of hierarchical clustering, the Pearson correlation coefficient for feature selection, and the cascade model with GRU layer from k-means clustering and hierarchical clustering. These results, which are evaluated using NRMSE, show that hierarchical clustering is more suitable for solar PV forecast than k-means clustering.
基于层次聚类和级联模型的短期太阳能光伏预测
随着太阳能光伏装置的大规模部署,管理发电系统的效率变得至关重要。一般来说,功率输出受到不断变化的太阳辐照度和天空条件的严重影响。因此,准确预测太阳能光伏发电的能力对于优化发电系统、估算收益、维持利润和确保服务质量至关重要。为了提高太阳能光伏预测的整体预测精度,本文提出了一种利用gru和RNN的多块串级模型结合层次聚类的太阳能光伏预测模型。该模型结合了层次聚类、用于特征选择的Pearson相关系数以及k-means聚类和层次聚类中具有GRU层的级联模型。结果表明,分层聚类比k-means聚类更适合于太阳能光伏预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信