An efficient family of Steffensen-type methods with memory for solving systems of nonlinear equations

IF 0.9 Q3 MATHEMATICS, APPLIED
Mona Narang, Saurabh Bhatia, Vinay Kanwar
{"title":"An efficient family of Steffensen-type methods with memory for solving systems of nonlinear equations","authors":"Mona Narang,&nbsp;Saurabh Bhatia,&nbsp;Vinay Kanwar","doi":"10.1002/cmm4.1192","DOIUrl":null,"url":null,"abstract":"<p>The article discusses derivative-free algorithms with and without memory for solving numerically nonlinear systems. We proposed a family of fifth- and sixth-order schemes and extended them to algorithms with memory. We further discuss the convergence and computational efficiency of these algorithms. Numerical examples of mixed Hammerstein integral equation, discrete nonlinear ordinary differential equation, and Fisher's partial differential equation with Neumann's boundary conditions are discussed to demonstrate the convergence and efficiency of these schemes. Finally, some numerical results are included to examine the performance of the developed methods.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1192","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The article discusses derivative-free algorithms with and without memory for solving numerically nonlinear systems. We proposed a family of fifth- and sixth-order schemes and extended them to algorithms with memory. We further discuss the convergence and computational efficiency of these algorithms. Numerical examples of mixed Hammerstein integral equation, discrete nonlinear ordinary differential equation, and Fisher's partial differential equation with Neumann's boundary conditions are discussed to demonstrate the convergence and efficiency of these schemes. Finally, some numerical results are included to examine the performance of the developed methods.

一类求解非线性方程组的具有记忆的steffensen型有效方法
本文讨论了求解数值非线性系统的有内存和无内存的无导数算法。我们提出了一组五阶和六阶格式,并将它们扩展到具有内存的算法中。进一步讨论了这些算法的收敛性和计算效率。讨论了具有Neumann边界条件的混合Hammerstein积分方程、离散非线性常微分方程和Fisher偏微分方程的数值算例,证明了这些格式的收敛性和有效性。最后,给出了一些数值结果来检验所开发方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信