Estimation of Split Points in Misspecified Decision Trees

J. Escanciano
{"title":"Estimation of Split Points in Misspecified Decision Trees","authors":"J. Escanciano","doi":"10.2139/ssrn.3591411","DOIUrl":null,"url":null,"abstract":"We establish rates of convergence for the least squares estimator of the split point in misspecified decision trees. We close the gap between the known superconsistency rate of the correctly specified case and the slow cube-root convergence of the misspecified smooth regression case. When the true regression function is discontinuous at the split point but not constant on both sides, so the simple binary tree model is misspecified, we recover the superconsistency of the least squares split point estimate and the asymptotic normality at parametric rates of the least squares level coefficients. When the regression function is continuous with a kink at the split point, we obtain rates between superconsistency and cube-root asymptotics, depending on the smoothness of the regression function around the split point. The analysis is extended to threshold regressions, where analogous rate results are obtained. In particular, we show that inference on the slope coefficients is robust to misspecification when a certain regression function is discontinuous at the split point. Monte Carlo simulations confirm the theoretical results.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3591411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish rates of convergence for the least squares estimator of the split point in misspecified decision trees. We close the gap between the known superconsistency rate of the correctly specified case and the slow cube-root convergence of the misspecified smooth regression case. When the true regression function is discontinuous at the split point but not constant on both sides, so the simple binary tree model is misspecified, we recover the superconsistency of the least squares split point estimate and the asymptotic normality at parametric rates of the least squares level coefficients. When the regression function is continuous with a kink at the split point, we obtain rates between superconsistency and cube-root asymptotics, depending on the smoothness of the regression function around the split point. The analysis is extended to threshold regressions, where analogous rate results are obtained. In particular, we show that inference on the slope coefficients is robust to misspecification when a certain regression function is discontinuous at the split point. Monte Carlo simulations confirm the theoretical results.
错误决策树中分裂点的估计
我们建立了错误指定决策树分裂点的最小二乘估计的收敛速率。我们缩小了正确指定情况下的已知超一致性率与错误指定的平滑回归情况下的缓慢立方根收敛之间的差距。当真实回归函数在分裂点处不连续而两边不恒定,导致简单二叉树模型被错误指定时,我们恢复了最小二乘分裂点估计的超相合性和最小二乘水平系数在参数速率下的渐近正态性。当回归函数在分裂点处连续且有一个扭结时,根据回归函数在分裂点附近的平滑性,我们得到了超相合和立方根渐近之间的速率。分析扩展到阈值回归,在那里获得类似的速率结果。特别地,我们证明了当某个回归函数在分裂点不连续时,对斜率系数的推断对错误规范具有鲁棒性。蒙特卡罗模拟证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信