Deep Learning based Super-Resolution for Medical Volume Visualization with Direct Volume Rendering

S. Devkota, S. Pattanaik
{"title":"Deep Learning based Super-Resolution for Medical Volume Visualization with Direct Volume Rendering","authors":"S. Devkota, S. Pattanaik","doi":"10.48550/arXiv.2210.08080","DOIUrl":null,"url":null,"abstract":"Modern-day display systems demand high-quality rendering. However, rendering at higher resolution requires a large number of data samples and is computationally expensive. Recent advances in deep learning-based image and video super-resolution techniques motivate us to investigate such networks for high-fidelity upscaling of frames rendered at a lower resolution to a higher resolution. While our work focuses on super-resolution of medical volume visualization performed with direct volume rendering, it is also applicable for volume visualization with other rendering techniques. We propose a learning-based technique where our proposed system uses color information along with other supplementary features gathered from our volume renderer to learn efficient upscaling of a low-resolution rendering to a higher-resolution space. Furthermore, to improve temporal stability, we also implement the temporal reprojection technique for accumulating history samples in volumetric rendering.","PeriodicalId":91444,"journal":{"name":"Advances in visual computing : ... international symposium, ISVC ... : proceedings. International Symposium on Visual Computing","volume":"89 1","pages":"103-114"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in visual computing : ... international symposium, ISVC ... : proceedings. International Symposium on Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.08080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern-day display systems demand high-quality rendering. However, rendering at higher resolution requires a large number of data samples and is computationally expensive. Recent advances in deep learning-based image and video super-resolution techniques motivate us to investigate such networks for high-fidelity upscaling of frames rendered at a lower resolution to a higher resolution. While our work focuses on super-resolution of medical volume visualization performed with direct volume rendering, it is also applicable for volume visualization with other rendering techniques. We propose a learning-based technique where our proposed system uses color information along with other supplementary features gathered from our volume renderer to learn efficient upscaling of a low-resolution rendering to a higher-resolution space. Furthermore, to improve temporal stability, we also implement the temporal reprojection technique for accumulating history samples in volumetric rendering.
基于深度学习的超分辨率医学体可视化直接体绘制
现代显示系统需要高质量的渲染。然而,在更高的分辨率下渲染需要大量的数据样本,并且计算成本很高。基于深度学习的图像和视频超分辨率技术的最新进展促使我们研究这种网络,以高保真地将低分辨率渲染的帧升级到高分辨率。虽然我们的工作重点是使用直接体绘制进行超分辨率的医学体可视化,但它也适用于使用其他渲染技术进行体可视化。我们提出了一种基于学习的技术,其中我们提出的系统使用颜色信息以及从我们的体渲染器收集的其他补充特征来学习将低分辨率渲染有效地升级到更高分辨率的空间。此外,为了提高时间稳定性,我们还实现了在体绘制中积累历史样本的时间重投影技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信