Bayesian inference for diffusion driven mixed-effects models

G. Whitaker, A. Golightly, R. Boys, C. Sherlock
{"title":"Bayesian inference for diffusion driven mixed-effects models","authors":"G. Whitaker, A. Golightly, R. Boys, C. Sherlock","doi":"10.1214/16-BA1009","DOIUrl":null,"url":null,"abstract":"Stochastic differential equations (SDEs) provide a natural framework for modelling intrinsic stochasticity inherent in many continuous-time physical processes. When such processes are observed in multiple individuals or experimental units, SDE driven mixed-effects models allow the quantification of between (as well as within) individual variation. Performing Bayesian inference for such models, using discrete time data that may be incomplete and subject to measurement error is a challenging problem and is the focus of this paper. We extend a recently proposed MCMC scheme to include the SDE driven mixed-effects framework. Fundamental to our approach is the development of a novel construct that allows for efficient sampling of conditioned SDEs that may exhibit nonlinear dynamics between observation times. We apply the resulting scheme to synthetic data generated from a simple SDE model of orange tree growth, and real data consisting of observations on aphid numbers recorded under a variety of different treatment regimes. In addition, we provide a systematic comparison of our approach with an inference scheme based on a tractable approximation of the SDE, that is, the linear noise approximation.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-BA1009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Stochastic differential equations (SDEs) provide a natural framework for modelling intrinsic stochasticity inherent in many continuous-time physical processes. When such processes are observed in multiple individuals or experimental units, SDE driven mixed-effects models allow the quantification of between (as well as within) individual variation. Performing Bayesian inference for such models, using discrete time data that may be incomplete and subject to measurement error is a challenging problem and is the focus of this paper. We extend a recently proposed MCMC scheme to include the SDE driven mixed-effects framework. Fundamental to our approach is the development of a novel construct that allows for efficient sampling of conditioned SDEs that may exhibit nonlinear dynamics between observation times. We apply the resulting scheme to synthetic data generated from a simple SDE model of orange tree growth, and real data consisting of observations on aphid numbers recorded under a variety of different treatment regimes. In addition, we provide a systematic comparison of our approach with an inference scheme based on a tractable approximation of the SDE, that is, the linear noise approximation.
扩散驱动混合效应模型的贝叶斯推理
随机微分方程(SDEs)为许多连续时间物理过程的固有随机性建模提供了一个自然的框架。当在多个个体或实验单元中观察到这些过程时,SDE驱动的混合效应模型允许量化个体之间(以及内部)的变化。使用可能不完整且存在测量误差的离散时间数据对此类模型进行贝叶斯推理是一个具有挑战性的问题,也是本文的重点。我们扩展了最近提出的MCMC方案,以包括SDE驱动的混合效果框架。我们方法的基础是开发一种新的结构,允许对可能在观测时间之间表现出非线性动态的条件SDEs进行有效采样。我们将结果方案应用于由简单SDE模型生成的橙树生长合成数据,以及在各种不同处理制度下记录的蚜虫数量的实际数据。此外,我们还将我们的方法与基于SDE的可处理近似的推理方案(即线性噪声近似)进行了系统的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信