Recovery of coefficients of a heat equation by Ritz collocation method

Prof.Kamal Rashedi
{"title":"Recovery of coefficients of a heat equation by Ritz collocation method","authors":"Prof.Kamal Rashedi","doi":"10.48129/kjs.18581","DOIUrl":null,"url":null,"abstract":"In this work, we discuss a one dimensional inverse problem for the heat equation where the unknown functions are solely time-dependent lower order coefficient and multiplicative source term. We use as data two integral overdetermination conditions along with the initial and Dirichlet boundary conditions. In the first step, the lower order term is eliminated by applying a transformation and the problem is converted to an equivalent inverse problem of determining a heat source with initial and boundary conditions, as well as a nonlocal energy over-specification. Then, we propose a Ritz approximation as the solution of the unknown temperature distribution and consider a truncated series as the approximation of unknown time-dependent coefficient in the heat source. The collocation method is utilized to reduce the inverse problem to the solution of a linear system of algebraic equations. Since the problem is ill-posed, numerical discretization of the reformulated problem may produce ill-conditioned system of equations. Therefore, the Tikhonov regularization technique is employed in order to obtain stable solutions. For the perturbed measurements, we employ the mollification method to derive stable numerical derivatives. Numerical simulations while solving two test examples are presented to show the applicability of the proposed method.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.18581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we discuss a one dimensional inverse problem for the heat equation where the unknown functions are solely time-dependent lower order coefficient and multiplicative source term. We use as data two integral overdetermination conditions along with the initial and Dirichlet boundary conditions. In the first step, the lower order term is eliminated by applying a transformation and the problem is converted to an equivalent inverse problem of determining a heat source with initial and boundary conditions, as well as a nonlocal energy over-specification. Then, we propose a Ritz approximation as the solution of the unknown temperature distribution and consider a truncated series as the approximation of unknown time-dependent coefficient in the heat source. The collocation method is utilized to reduce the inverse problem to the solution of a linear system of algebraic equations. Since the problem is ill-posed, numerical discretization of the reformulated problem may produce ill-conditioned system of equations. Therefore, the Tikhonov regularization technique is employed in order to obtain stable solutions. For the perturbed measurements, we employ the mollification method to derive stable numerical derivatives. Numerical simulations while solving two test examples are presented to show the applicability of the proposed method.
热方程系数的Ritz配置法恢复
在这项工作中,我们讨论了一个一维反问题的热方程,其中未知函数仅仅是时间相关的低阶系数和乘法源项。我们使用两个积分过定条件以及初始边界条件和狄利克雷边界条件作为数据。在第一步中,通过变换消除了低阶项,将问题转化为具有初始条件和边界条件以及非局部能量超规范的热源确定的等效逆问题。然后,我们提出了一个里兹近似作为未知温度分布的解,并考虑截断级数作为热源中未知时间相关系数的近似。利用配点法将反问题简化为线性代数方程组的解。由于问题是病态的,重新表述问题的数值离散化可能产生病态方程组。因此,为了得到稳定解,采用了Tikhonov正则化技术。对于摄动测量,我们采用柔化法推导出稳定的数值导数。通过两个实例的数值模拟,验证了所提方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kuwait Journal of Science & Engineering
Kuwait Journal of Science & Engineering MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信