Guoqi Xie, Hao Peng, Xiongren Xiao, Yao Liu, Renfa Li
{"title":"Design Flow and Methodology for Dynamic and Static Energy-constrained Scheduling Framework in Heterogeneous Multicore Embedded Devices","authors":"Guoqi Xie, Hao Peng, Xiongren Xiao, Yao Liu, Renfa Li","doi":"10.1145/3450448","DOIUrl":null,"url":null,"abstract":"With Internet of things technologies, billions of embedded devices, including smart gateways, smart phones, and mobile robots, are connected and deeply integrated. Almost all these embedded devices are battery-constrained and energy-limited systems. In recent years, several works used energy pre-assignment techniques to study the dynamic energy-constrained scheduling of a parallel application in heterogeneous multicore embedded systems. However, the existing energy pre-assignment techniques cannot satisfy the actual energy constraint, because it is the joint constraint on dynamic energy and static energy. Further, the modeling and verification of these works are based on the simulations, which have not been verified in real embedded devices. This study aims to propose a dynamic and static energy-constrained scheduling framework in heterogeneous multicore embedded devices. Solving this problem can utilize existing energy pre-assignment techniques, but it requires a deeply integrated design flow and methodology. The design flow consists of four processes: (1) power and energy modeling; (2) power parameter measurement; (3) basic framework design including energy pre-assignment; and (4) framework optimization. Each design flow has corresponding design methodology. Both our theoretical analysis and practical verification using the low-power ODROID-XU4 device confirm the effectiveness of the proposed framework.","PeriodicalId":7063,"journal":{"name":"ACM Trans. Design Autom. Electr. Syst.","volume":"3 1","pages":"36:1-36:18"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Design Autom. Electr. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With Internet of things technologies, billions of embedded devices, including smart gateways, smart phones, and mobile robots, are connected and deeply integrated. Almost all these embedded devices are battery-constrained and energy-limited systems. In recent years, several works used energy pre-assignment techniques to study the dynamic energy-constrained scheduling of a parallel application in heterogeneous multicore embedded systems. However, the existing energy pre-assignment techniques cannot satisfy the actual energy constraint, because it is the joint constraint on dynamic energy and static energy. Further, the modeling and verification of these works are based on the simulations, which have not been verified in real embedded devices. This study aims to propose a dynamic and static energy-constrained scheduling framework in heterogeneous multicore embedded devices. Solving this problem can utilize existing energy pre-assignment techniques, but it requires a deeply integrated design flow and methodology. The design flow consists of four processes: (1) power and energy modeling; (2) power parameter measurement; (3) basic framework design including energy pre-assignment; and (4) framework optimization. Each design flow has corresponding design methodology. Both our theoretical analysis and practical verification using the low-power ODROID-XU4 device confirm the effectiveness of the proposed framework.