Certified Hardness vs. Randomness for Log-Space

Edward Pyne, R. Raz, Wei Zhan
{"title":"Certified Hardness vs. Randomness for Log-Space","authors":"Edward Pyne, R. Raz, Wei Zhan","doi":"10.48550/arXiv.2303.16413","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{L}$ be a language that can be decided in linear space and let $\\epsilon>0$ be any constant. Let $\\mathcal{A}$ be the exponential hardness assumption that for every $n$, membership in $\\mathcal{L}$ for inputs of length~$n$ cannot be decided by circuits of size smaller than $2^{\\epsilon n}$. We prove that for every function $f :\\{0,1\\}^* \\rightarrow \\{0,1\\}$, computable by a randomized logspace algorithm $R$, there exists a deterministic logspace algorithm $D$ (attempting to compute $f$), such that on every input $x$ of length $n$, the algorithm $D$ outputs one of the following: 1: The correct value $f(x)$. 2: The string: ``I am unable to compute $f(x)$ because the hardness assumption $\\mathcal{A}$ is false'', followed by a (provenly correct) circuit of size smaller than $2^{\\epsilon n'}$ for membership in $\\mathcal{L}$ for inputs of length~$n'$, for some $n' = \\Theta (\\log n)$; that is, a circuit that refutes $\\mathcal{A}$. Our next result is a universal derandomizer for $BPL$: We give a deterministic algorithm $U$ that takes as an input a randomized logspace algorithm $R$ and an input $x$ and simulates the computation of $R$ on $x$, deteriministically. Under the widely believed assumption $BPL=L$, the space used by $U$ is at most $C_R \\cdot \\log n$ (where $C_R$ is a constant depending on~$R$). Moreover, for every constant $c \\geq 1$, if $BPL\\subseteq SPACE[(\\log(n))^{c}]$ then the space used by $U$ is at most $C_R \\cdot (\\log(n))^{c}$. Finally, we prove that if optimal hitting sets for ordered branching programs exist then there is a deterministic logspace algorithm that, given a black-box access to an ordered branching program $B$ of size $n$, estimates the probability that $B$ accepts on a uniformly random input. This extends the result of (Cheng and Hoza CCC 2020), who proved that an optimal hitting set implies a white-box two-sided derandomization.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.16413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let $\mathcal{L}$ be a language that can be decided in linear space and let $\epsilon>0$ be any constant. Let $\mathcal{A}$ be the exponential hardness assumption that for every $n$, membership in $\mathcal{L}$ for inputs of length~$n$ cannot be decided by circuits of size smaller than $2^{\epsilon n}$. We prove that for every function $f :\{0,1\}^* \rightarrow \{0,1\}$, computable by a randomized logspace algorithm $R$, there exists a deterministic logspace algorithm $D$ (attempting to compute $f$), such that on every input $x$ of length $n$, the algorithm $D$ outputs one of the following: 1: The correct value $f(x)$. 2: The string: ``I am unable to compute $f(x)$ because the hardness assumption $\mathcal{A}$ is false'', followed by a (provenly correct) circuit of size smaller than $2^{\epsilon n'}$ for membership in $\mathcal{L}$ for inputs of length~$n'$, for some $n' = \Theta (\log n)$; that is, a circuit that refutes $\mathcal{A}$. Our next result is a universal derandomizer for $BPL$: We give a deterministic algorithm $U$ that takes as an input a randomized logspace algorithm $R$ and an input $x$ and simulates the computation of $R$ on $x$, deteriministically. Under the widely believed assumption $BPL=L$, the space used by $U$ is at most $C_R \cdot \log n$ (where $C_R$ is a constant depending on~$R$). Moreover, for every constant $c \geq 1$, if $BPL\subseteq SPACE[(\log(n))^{c}]$ then the space used by $U$ is at most $C_R \cdot (\log(n))^{c}$. Finally, we prove that if optimal hitting sets for ordered branching programs exist then there is a deterministic logspace algorithm that, given a black-box access to an ordered branching program $B$ of size $n$, estimates the probability that $B$ accepts on a uniformly random input. This extends the result of (Cheng and Hoza CCC 2020), who proved that an optimal hitting set implies a white-box two-sided derandomization.
对数空间的认证硬度与随机性
设$\mathcal{L}$为一种可以在线性空间中决定的语言,设$\epsilon>0$为任意常数。设$\mathcal{A}$为指数硬度假设,对于每一个$n$,对于长度为$n$的输入,其在$\mathcal{L}$中的隶属度不能由尺寸小于$2^{\epsilon n}$的电路决定。我们证明了对于每个函数$f :\{0,1\}^* \rightarrow \{0,1\}$,可以通过随机化的对数空间算法$R$计算,存在一个确定性的对数空间算法$D$(试图计算$f$),使得对于长度为$n$的每个输入$x$,算法$D$输出如下结果之一:1:正确的值$f(x)$。2:字符串:''我无法计算$f(x)$,因为硬度假设$\mathcal{A}$是假的',然后是一个(被证明是正确的)电路,对于长度为$n'$的输入,对于一些$n' = \Theta (\log n)$,对于$\mathcal{L}$的成员,尺寸小于$2^{\epsilon n'}$;也就是反驳$\mathcal{A}$的电路。我们的下一个结果是$BPL$的通用去随机化器:我们给出一个确定性算法$U$,它将随机化对数空间算法$R$和输入$x$作为输入,并在$x$上确定性地模拟$R$的计算。在普遍认为的假设$BPL=L$下,$U$使用的空间最多为$C_R \cdot \log n$(其中$C_R$是一个常数,取决于$R$)。此外,对于每个常数$c \geq 1$,如果$BPL\subseteq SPACE[(\log(n))^{c}]$,则$U$使用的空间最多为$C_R \cdot (\log(n))^{c}$。最后,我们证明了如果有序分支程序的最优命中集存在,那么存在一个确定性对数空间算法,该算法在给定大小为$n$的有序分支程序$B$的黑盒访问时,估计$B$接受一致随机输入的概率。这扩展了(Cheng和Hoza CCC 2020)的结果,他们证明了最优命中集意味着白盒双边非随机化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信