{"title":"The Muon g-2 Experiment Overview and Status","authors":"J. Holzbauer","doi":"10.22323/1.295.0116","DOIUrl":null,"url":null,"abstract":"The Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion, which is a factor of four improvement over the previous E821 measurement at Brookhaven. The experiment will also extend the search for the muon electric dipole moment (EDM) by approximately two orders of magnitude. Both of these measurements are made by combining a precise measurement of the 1.45T storage ring magnetic field with an analysis of the modulation of the decay rate of the higher-energy positrons from the (anti-)muon decays recorded by 24 calorimeters and 3 straw tracking detectors. The current status of the experiment as well as results from the initial beam delivery and commissioning run in the summer of 2017 will be discussed.","PeriodicalId":8429,"journal":{"name":"arXiv: High Energy Physics - Experiment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.295.0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion, which is a factor of four improvement over the previous E821 measurement at Brookhaven. The experiment will also extend the search for the muon electric dipole moment (EDM) by approximately two orders of magnitude. Both of these measurements are made by combining a precise measurement of the 1.45T storage ring magnetic field with an analysis of the modulation of the decay rate of the higher-energy positrons from the (anti-)muon decays recorded by 24 calorimeters and 3 straw tracking detectors. The current status of the experiment as well as results from the initial beam delivery and commissioning run in the summer of 2017 will be discussed.