A Novel Axial Modification and Simulation Analysis of Involute Spur Gear

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Ningning Wang, Xueyi Li, Kun Wang, Q. Zeng, X. Shen
{"title":"A Novel Axial Modification and Simulation Analysis of Involute Spur Gear","authors":"Ningning Wang, Xueyi Li, Kun Wang, Q. Zeng, X. Shen","doi":"10.5545/SV-JME.2017.4307","DOIUrl":null,"url":null,"abstract":"The transmission of spur gear mechanism may generate uneven load distribution because of machining error, assembly error, elastic deformation, and other factors, resulting in serious damage to the bearing capacity and service life of gears. To improve the contact condition of gear pairs and enhance the meshing performance and bearing capacity, this study proposed a novel axial modification method based on a composite modification curve with indefinite parameters and an evaluation method to evaluate modification effects. In addition to the surface equation of modified tooth was derived according to the composite modification curve, and the finite element model was built for gear pair. After conducting simulation analysis for the meshing process, the location and the shape of contact area as well as the other results can be acquired. In addition, the modification parameters can be optimized by performing orthogonal experiments for modified gear pairs; thus, the ideal modification effect is obtained at a specific operating condition. Moreover, comparison analysis was performed, and the results show that the phenomenon of uneven load distribution is dramatically improved when the gear pair was modified with optimized parameters, and the bearing capacity of the gear pair was increased. Finally, using the optimized parameters to trial-produce gears and conducting running-in tests, the effectiveness and the practicability of the method proposed in this study were verified.","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/SV-JME.2017.4307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 7

Abstract

The transmission of spur gear mechanism may generate uneven load distribution because of machining error, assembly error, elastic deformation, and other factors, resulting in serious damage to the bearing capacity and service life of gears. To improve the contact condition of gear pairs and enhance the meshing performance and bearing capacity, this study proposed a novel axial modification method based on a composite modification curve with indefinite parameters and an evaluation method to evaluate modification effects. In addition to the surface equation of modified tooth was derived according to the composite modification curve, and the finite element model was built for gear pair. After conducting simulation analysis for the meshing process, the location and the shape of contact area as well as the other results can be acquired. In addition, the modification parameters can be optimized by performing orthogonal experiments for modified gear pairs; thus, the ideal modification effect is obtained at a specific operating condition. Moreover, comparison analysis was performed, and the results show that the phenomenon of uneven load distribution is dramatically improved when the gear pair was modified with optimized parameters, and the bearing capacity of the gear pair was increased. Finally, using the optimized parameters to trial-produce gears and conducting running-in tests, the effectiveness and the practicability of the method proposed in this study were verified.
渐开线直齿齿轮轴向修形及仿真分析
正齿轮机构的传动可能由于加工误差、装配误差、弹性变形等因素而产生载荷分布不均匀,导致齿轮的承载能力和使用寿命受到严重损害。为了改善齿轮副的接触状况,提高齿轮副的啮合性能和承载能力,提出了一种基于不定参数复合修形曲线的轴向修形方法和修形效果评价方法。此外,根据复合修形曲线推导了修形齿的曲面方程,并建立了齿轮副的有限元模型。通过对啮合过程进行仿真分析,得到了接触区域的位置和形状等结果。此外,通过对修齿副进行正交试验,优化修齿参数;因此,在特定的操作条件下,获得了理想的改性效果。对比分析结果表明,采用优化后的参数对齿轮副进行修改后,载荷分布不均匀的现象得到了显著改善,齿轮副的承载能力得到了提高。最后,利用优化后的参数进行了齿轮的试制和磨合试验,验证了所提方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
17.60%
发文量
56
审稿时长
4.1 months
期刊介绍: The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis. The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信