{"title":"Industry 4.0: Hand Recognition on Assembly Supervision Process","authors":"Riska Analia, A. Pratama, S. Susanto","doi":"10.30871/ji.v13i1.2757","DOIUrl":null,"url":null,"abstract":"In the assembly industry, the process of assembling components is very important in order to produce a quality product. Assembly of components should be carried out sequentially based on the standards set by the company. For companies that still operate the assembly process manually by employee, sometimes errors occur in the assembly process, which can affect the quality of production. In order to be carried out the assembly process according to the procedure, a system is needed that can detect employee hands when carrying out the assembly process automatically. This study proposes an artificial intelligence-based real-time employee hand detection system. This system will be the basis for the development of an automatic industrial product assembly process to welcome the Industry 4.0. To verify system performance, several experiments were carried out, such as; detecting the right and left hands of employees and detecting hands when using accessories or not. From the experimental results it can be concluded that the system is able to detect the right and left hands of employees well with the resulting FPS average of 15.4.","PeriodicalId":17757,"journal":{"name":"JURNAL INTEGRASI PROSES","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL INTEGRASI PROSES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30871/ji.v13i1.2757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the assembly industry, the process of assembling components is very important in order to produce a quality product. Assembly of components should be carried out sequentially based on the standards set by the company. For companies that still operate the assembly process manually by employee, sometimes errors occur in the assembly process, which can affect the quality of production. In order to be carried out the assembly process according to the procedure, a system is needed that can detect employee hands when carrying out the assembly process automatically. This study proposes an artificial intelligence-based real-time employee hand detection system. This system will be the basis for the development of an automatic industrial product assembly process to welcome the Industry 4.0. To verify system performance, several experiments were carried out, such as; detecting the right and left hands of employees and detecting hands when using accessories or not. From the experimental results it can be concluded that the system is able to detect the right and left hands of employees well with the resulting FPS average of 15.4.