Monitoring aseismic fault creep using persistent urban geodetic markers generated from mobile laser scanning

Xinxiang Zhu (Ph.D. candidate) Sean , Craig L. Glennie Ph.D., P.Eng. , Benjamin A. Brooks Ph.D. , Todd L. Ericksen M.S., P.Eng.
{"title":"Monitoring aseismic fault creep using persistent urban geodetic markers generated from mobile laser scanning","authors":"Xinxiang Zhu (Ph.D. candidate) Sean ,&nbsp;Craig L. Glennie Ph.D., P.Eng. ,&nbsp;Benjamin A. Brooks Ph.D. ,&nbsp;Todd L. Ericksen M.S., P.Eng.","doi":"10.1016/j.ophoto.2021.100009","DOIUrl":null,"url":null,"abstract":"<div><p>High resolution and high accuracy distributed detection of fault creep deformation remains challenging given limited observations and associated change detection strategies. A mobile laser scanning-based change detection method that is capable of measuring centimeter-level near-field (<span><math><mo>&lt;</mo><mn>150</mn></math></span> m from fault) deformation is described. The methodology leverages the use of man-made features in the built environment as geodetic markers that can be temporally tracked. The proposed framework consists of a RANSAC-based corresponding plane detector and a combined least squares displacement estimator. Using repeat mobile laser scanning data collected in 2015 and 2017 on a 2 ​km segment of the Hayward fault, near-field fault creep displacement and non-linear creep deformation are estimated. The detection results reveal 2.5 ​± ​1.5 ​cm of accumulated fault parallel creep displacement in the far-field. The laser scanning estimates of displacement match collocated alinement array observations at the 4 ​mm level in the near field. The proposed change detection framework is shown to be accurate and practical for fault creep displacement detection in the near field and the detected non-linear creep displacement patterns will help elucidate the complex physics of surface faulting.</p></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"2 ","pages":"Article 100009"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667393221000090/pdfft?md5=9dbc42c227f1d8a9bb0569ac5a8181f1&pid=1-s2.0-S2667393221000090-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393221000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

High resolution and high accuracy distributed detection of fault creep deformation remains challenging given limited observations and associated change detection strategies. A mobile laser scanning-based change detection method that is capable of measuring centimeter-level near-field (<150 m from fault) deformation is described. The methodology leverages the use of man-made features in the built environment as geodetic markers that can be temporally tracked. The proposed framework consists of a RANSAC-based corresponding plane detector and a combined least squares displacement estimator. Using repeat mobile laser scanning data collected in 2015 and 2017 on a 2 ​km segment of the Hayward fault, near-field fault creep displacement and non-linear creep deformation are estimated. The detection results reveal 2.5 ​± ​1.5 ​cm of accumulated fault parallel creep displacement in the far-field. The laser scanning estimates of displacement match collocated alinement array observations at the 4 ​mm level in the near field. The proposed change detection framework is shown to be accurate and practical for fault creep displacement detection in the near field and the detected non-linear creep displacement patterns will help elucidate the complex physics of surface faulting.

Abstract Image

利用移动激光扫描产生的持久城市大地测量标记监测地震断层蠕变
在有限的观测和相关的变化检测策略下,高分辨率和高精度的断层蠕变分布检测仍然是一个挑战。描述了一种基于移动激光扫描的变化检测方法,该方法能够测量厘米级近场(距断层150 m)变形。该方法利用建筑环境中的人造特征作为可以暂时跟踪的大地测量标记。该框架由基于ransac的对应平面检测器和组合最小二乘位移估计器组成。利用2015年和2017年收集的海沃德断层2 km段的重复移动激光扫描数据,估计了近场断层蠕变位移和非线性蠕变变形。检测结果显示远场断层平行蠕变位移累计为2.5±1.5 cm。激光扫描位移估计与近场4 mm水平平行阵列观测值相匹配。所提出的变化检测框架在近场断层蠕变位移检测中是准确和实用的,检测到的非线性蠕变位移模式有助于阐明地表断层的复杂物理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信