Model-Driven Geo-Elasticity in Database Clouds

Tian Guo, P. Shenoy
{"title":"Model-Driven Geo-Elasticity in Database Clouds","authors":"Tian Guo, P. Shenoy","doi":"10.1109/ICAC.2015.46","DOIUrl":null,"url":null,"abstract":"Motivated by the emergence of distributed clouds, we argue for the need for geo-elastic provisioning of application replicas to effectively handle temporal and spatial workload fluctuations seen by such applications. We present DBScale, a system that tracks geographic variations in the workload to dynamically provision database replicas at different cloud locations across the globe. Our geo-elastic provisioning approach comprises a regression-based model to infer the database query workload from observations of the spatially distributed front-end workload and a two-node open queueing network model to provision databases with both CPU and I/O-intensive query workloads. We implement a prototype of our DBScale system on Amazon EC2's distributed cloud. Our experiments with our prototype show up to a 66% improvement in response time when compared to local elasticity approaches.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"43 1","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Motivated by the emergence of distributed clouds, we argue for the need for geo-elastic provisioning of application replicas to effectively handle temporal and spatial workload fluctuations seen by such applications. We present DBScale, a system that tracks geographic variations in the workload to dynamically provision database replicas at different cloud locations across the globe. Our geo-elastic provisioning approach comprises a regression-based model to infer the database query workload from observations of the spatially distributed front-end workload and a two-node open queueing network model to provision databases with both CPU and I/O-intensive query workloads. We implement a prototype of our DBScale system on Amazon EC2's distributed cloud. Our experiments with our prototype show up to a 66% improvement in response time when compared to local elasticity approaches.
数据库云中模型驱动的地理弹性
由于分布式云的出现,我们认为需要提供应用程序副本的地理弹性,以有效地处理此类应用程序所看到的时间和空间工作负载波动。我们介绍了DBScale,这个系统可以跟踪工作负载的地理变化,从而在全球不同的云位置动态地提供数据库副本。我们的地理弹性配置方法包括一个基于回归的模型,用于根据对空间分布的前端工作负载的观察推断数据库查询工作负载,以及一个双节点开放排队网络模型,用于为数据库提供CPU和I/ o密集型查询工作负载。我们在Amazon EC2的分布式云上实现了DBScale系统的原型。我们对原型的实验表明,与局部弹性方法相比,响应时间提高了66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信