H. Allawi, Moataz Jalil Jasim, Kareem Abdulameer Difar
{"title":"X-Ray Solar Flares Observed and Detected by The New Very-Low-Frequency Receiver in Nasiriyah City, South of Iraq","authors":"H. Allawi, Moataz Jalil Jasim, Kareem Abdulameer Difar","doi":"10.23851/MJS.V32I2.984","DOIUrl":null,"url":null,"abstract":"A receiver station was installed at Nasiriyah (Dhi Qar University - Faculty of Sciences) to receive very low frequency (VLF) radio signals from transmitters around the world. VLF waves are excellent probes of the sudden ionospheric disturbance (SID); they detect varying properties of the D layer presented as a lower region of the ionosphere when these waves propagate through the Earth-Ionosphere Waveguide. This study describes the set-up of our station system and it demonstrates its ability to detect sudden ionospheric disturbances caused by solar flares in May, June, July, August, and September 2017. We found out that the monitoring station is working successfully to receive FLV signals, and to detect sudden ionospheric disturbances. We detected 17 events resulting from solar flare C-class, 8 events from M-class, and 3 events from X-class that caused an increase in the received FLV amplitude.","PeriodicalId":7515,"journal":{"name":"Al-Mustansiriyah Journal of Sciences","volume":"142 1","pages":"58-62"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Mustansiriyah Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23851/MJS.V32I2.984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A receiver station was installed at Nasiriyah (Dhi Qar University - Faculty of Sciences) to receive very low frequency (VLF) radio signals from transmitters around the world. VLF waves are excellent probes of the sudden ionospheric disturbance (SID); they detect varying properties of the D layer presented as a lower region of the ionosphere when these waves propagate through the Earth-Ionosphere Waveguide. This study describes the set-up of our station system and it demonstrates its ability to detect sudden ionospheric disturbances caused by solar flares in May, June, July, August, and September 2017. We found out that the monitoring station is working successfully to receive FLV signals, and to detect sudden ionospheric disturbances. We detected 17 events resulting from solar flare C-class, 8 events from M-class, and 3 events from X-class that caused an increase in the received FLV amplitude.