K-binID: Kernel binary code identification for Virtual Machine Introspection

Yacine Hebbal, S. Laniepce, Jean-Marc Menaud
{"title":"K-binID: Kernel binary code identification for Virtual Machine Introspection","authors":"Yacine Hebbal, S. Laniepce, Jean-Marc Menaud","doi":"10.1109/DESEC.2017.8073801","DOIUrl":null,"url":null,"abstract":"Virtual Machine Introspection (VMI) techniques generally employ kernel symbols to obtain addresses of kernel data and functions of interest to monitor guest OS states and activities. However, employing kernel symbols in an Infrastructure as a Service (IaaS) cloud presumes perfect knowledge of what kernel version and customization is running in an introspected VM. Moreover, existing kernel fingerprinting techniques are limited in precision and usability due to insufficient coverage of kernel code. So they are not suitable for IaaS cloud. In this paper, we present K-binID, a set of new automatic and OS-independent techniques based on static binary code analysis that enables the hypervisor to precisely identify version and customization of VM main kernel binary code (among a set of known kernels). K-binID achieves this in black-box regardless of challenges presented by compiler optimizations and kernel base address randomization. We designed and implemented our prototype of K-binID on KVM hypervisor. K-binID evaluation on a variety of Linux kernel binary code versions shows that, in 1 to 5 seconds, K-binID identifies precisely both the kernel version and customization of all tested kernels.","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"321 1","pages":"107-114"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESEC.2017.8073801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Virtual Machine Introspection (VMI) techniques generally employ kernel symbols to obtain addresses of kernel data and functions of interest to monitor guest OS states and activities. However, employing kernel symbols in an Infrastructure as a Service (IaaS) cloud presumes perfect knowledge of what kernel version and customization is running in an introspected VM. Moreover, existing kernel fingerprinting techniques are limited in precision and usability due to insufficient coverage of kernel code. So they are not suitable for IaaS cloud. In this paper, we present K-binID, a set of new automatic and OS-independent techniques based on static binary code analysis that enables the hypervisor to precisely identify version and customization of VM main kernel binary code (among a set of known kernels). K-binID achieves this in black-box regardless of challenges presented by compiler optimizations and kernel base address randomization. We designed and implemented our prototype of K-binID on KVM hypervisor. K-binID evaluation on a variety of Linux kernel binary code versions shows that, in 1 to 5 seconds, K-binID identifies precisely both the kernel version and customization of all tested kernels.
K-binID:内核二进制代码识别的虚拟机自省
虚拟机自省(VMI)技术通常使用内核符号来获取内核数据和相关函数的地址,以监视来宾操作系统状态和活动。然而,在基础设施即服务(IaaS)云中使用内核符号,需要完全了解内省虚拟机中运行的内核版本和定制。此外,由于内核代码覆盖范围不够,现有的内核指纹识别技术在精度和可用性方面受到限制。所以它们不适合IaaS云。在本文中,我们提出了K-binID,这是一套新的基于静态二进制代码分析的自动化和与操作系统无关的技术,它使管理程序能够精确地识别VM主内核二进制代码的版本和定制(在一组已知内核中)。K-binID在黑盒中实现了这一点,而不考虑编译器优化和内核基址随机化带来的挑战。我们在KVM管理程序上设计并实现了K-binID原型。对各种Linux内核二进制代码版本的K-binID评估表明,在1到5秒内,K-binID可以准确地识别出所有被测试内核的内核版本和定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信