Deposition of aerosol flowing past a cylindrical fiber in a uniform electric field

G Zebel
{"title":"Deposition of aerosol flowing past a cylindrical fiber in a uniform electric field","authors":"G Zebel","doi":"10.1016/0095-8522(65)90033-4","DOIUrl":null,"url":null,"abstract":"<div><p>The deposition of aerosol particles from an air stream of velocity <em>V</em><sub>0</sub> upon a circular cylindrical fiber perpendicular to the stream in a homogeneous electrical field <em>E</em><sub>0</sub>, has been investigated theoretically. The dielectric constant <em>ϵ</em><sub><em>c</em></sub> of the fiber controls by means of the parameter <span><math><mtext>a = </mtext><mtext>(ϵ</mtext><msub><mi></mi><mn>c</mn></msub><mtext> − 1)</mtext><mtext>(ϵ</mtext><msub><mi></mi><mn>c</mn></msub><mtext> + 1)</mtext></math></span> the additive inhomogeneous field of the fiber, which effectuates the deposition of the particles. When computing the trajectories, both inertia and image forces for charged particles have been neglected. The computations have been made for frictionless potential flow and for viscous flow according to Lamb.</p><p>For uncharged particles, the dimensionless parameter <em>F</em> ∼ <em>r</em><sub>8</sub><sup>3</sup><em>E</em><sub>0</sub><sup>2</sup><em>B</em>/<em>r</em><sub><em>c</em></sub><em>V</em><sub>0</sub> (where <em>r</em><sub><em>s</em></sub>, <em>B</em> = radius and mobility of the particle; <em>r</em><sub><em>c</em></sub> = radius of the fiber) determines the value of the deposition coefficient. Exact solutions for the limiting case <em>a</em> = 0 as well as some approximate solutions for <em>a</em> ≠ 0, obtained by the Runge-Kutta method, are given.</p><p>For particles carrying an electrical charge <em>q</em>, the dimensionless parameter <em>G</em> = <em>E</em><sub>0</sub><em>qB</em>/<em>V</em><sub>0</sub> is decisive. From the exact solutions the deposition coefficient is given by <span><math><mtext>ζ = </mtext><mtext>G(a + 1)</mtext><mtext>(G + 1)</mtext><mtext>, </mtext><mtext>if</mtext><mtext> G &gt; 0</mtext></math></span>, for ideal and viscous flow. With negative <em>G</em>, the fiber may be surrounded by a “dust-free space.”</p></div>","PeriodicalId":15437,"journal":{"name":"Journal of Colloid Science","volume":"20 6","pages":"Pages 522-543"},"PeriodicalIF":0.0000,"publicationDate":"1965-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0095-8522(65)90033-4","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0095852265900334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

The deposition of aerosol particles from an air stream of velocity V0 upon a circular cylindrical fiber perpendicular to the stream in a homogeneous electrical field E0, has been investigated theoretically. The dielectric constant ϵc of the fiber controls by means of the parameter a = c − 1)c + 1) the additive inhomogeneous field of the fiber, which effectuates the deposition of the particles. When computing the trajectories, both inertia and image forces for charged particles have been neglected. The computations have been made for frictionless potential flow and for viscous flow according to Lamb.

For uncharged particles, the dimensionless parameter Fr83E02B/rcV0 (where rs, B = radius and mobility of the particle; rc = radius of the fiber) determines the value of the deposition coefficient. Exact solutions for the limiting case a = 0 as well as some approximate solutions for a ≠ 0, obtained by the Runge-Kutta method, are given.

For particles carrying an electrical charge q, the dimensionless parameter G = E0qB/V0 is decisive. From the exact solutions the deposition coefficient is given by ζ = G(a + 1)(G + 1), if G > 0, for ideal and viscous flow. With negative G, the fiber may be surrounded by a “dust-free space.”

气溶胶在均匀电场中流过圆柱形纤维的沉积
从理论上研究了在均匀电场E0中,速度为V0的气流在垂直于气流的圆柱形纤维上的气溶胶粒子的沉积。光纤的介电常数ϵc通过参数a = (ϵc−1)(ϵc + 1)控制光纤的外加非均匀场,从而影响颗粒的沉积。在计算轨迹时,忽略了带电粒子的惯性和像力。根据Lamb的理论,对无摩擦势流和粘性流进行了计算。对于不带电粒子,无量纲参数F ~ r83E02B/rcV0(其中rs, B =粒子半径和迁移率;Rc =光纤的半径)决定了沉积系数的值。给出了用龙格-库塔方法得到的极限情况a = 0的精确解和a≠0的近似解。对于带电荷q的粒子,无量纲参数G = E0qB/V0是决定性的。根据精确解,沉积系数为ζ = G(a + 1)(G + 1),如果G >0,为理想和粘性流动。负G时,纤维可能被“无尘空间”包围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信