DeepLook: a deep learning computed diagnosis support for breast tomosynthesis

G. Mettivier, Roberta Ricciarci, A. Sarno, F. S. Maddaloni, M. Porzio, M. Staffa, Salvatori Minelli, A. Santoro, E. Antignani, M. Masi, V. Landoni, P. Ordoñez, F. Ferranti, Laura Greco, S. Clemente, P. Russo
{"title":"DeepLook: a deep learning computed diagnosis support for breast tomosynthesis","authors":"G. Mettivier, Roberta Ricciarci, A. Sarno, F. S. Maddaloni, M. Porzio, M. Staffa, Salvatori Minelli, A. Santoro, E. Antignani, M. Masi, V. Landoni, P. Ordoñez, F. Ferranti, Laura Greco, S. Clemente, P. Russo","doi":"10.1117/12.2625369","DOIUrl":null,"url":null,"abstract":"The aim of the DeepLook project, funded by INFN (Italy), is to implement a deep learning architecture for Computed Aided Detection (CAD), based on neural networks developed with deep learning methods, for the automatic detection and classification of breast lesions in DBT images. A preliminary step (started 2 years ago and still ongoing) was the creation of a dataset of annotated images. This dataset includes images acquired with different clinical DBT units and different acquisition geometries, on several hundred patients, containing a variety of possible breast lesions and normal cases of absence of lesions. This will make the diagnostic capacity of the CAD system particularly extensive in various clinical situations and on a significant sample of patients, so allowing the network to diagnose various types of lesions (at the level of the single tomosynthesis slices) and capable of operate on commercial DBT systems, also available from different vendors, as found in breast diagnosis departments. The developed CAD and first result of the indication of the slice containing the suspected mass will be presented.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"17 1","pages":"122860P - 122860P-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of the DeepLook project, funded by INFN (Italy), is to implement a deep learning architecture for Computed Aided Detection (CAD), based on neural networks developed with deep learning methods, for the automatic detection and classification of breast lesions in DBT images. A preliminary step (started 2 years ago and still ongoing) was the creation of a dataset of annotated images. This dataset includes images acquired with different clinical DBT units and different acquisition geometries, on several hundred patients, containing a variety of possible breast lesions and normal cases of absence of lesions. This will make the diagnostic capacity of the CAD system particularly extensive in various clinical situations and on a significant sample of patients, so allowing the network to diagnose various types of lesions (at the level of the single tomosynthesis slices) and capable of operate on commercial DBT systems, also available from different vendors, as found in breast diagnosis departments. The developed CAD and first result of the indication of the slice containing the suspected mass will be presented.
DeepLook:一个用于乳腺断层合成的深度学习计算机诊断支持
由INFN(意大利)资助的DeepLook项目的目的是实现基于深度学习方法开发的神经网络的计算机辅助检测(CAD)的深度学习架构,用于DBT图像中乳腺病变的自动检测和分类。第一步(从两年前开始,目前仍在进行中)是创建带注释的图像数据集。该数据集包括数百名患者的不同临床DBT单元和不同采集几何形状的图像,包含各种可能的乳房病变和无病变的正常病例。这将使CAD系统的诊断能力在各种临床情况和大量患者样本中特别广泛,因此允许网络诊断各种类型的病变(在单个断层合成切片的水平上),并能够在商业DBT系统上运行,也可以从不同的供应商获得,如在乳腺诊断部门。将介绍已开发的CAD和包含可疑肿块的切片指示的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信