{"title":"Influence of tetrabutylammonium hexafluorophosphate doping on the performance of single layer bulk heterojunction organic solar cells","authors":"C. Yap, M. Yahayaa, Matarneh Muhamad","doi":"10.1109/ESCINANO.2010.5700984","DOIUrl":null,"url":null,"abstract":"Organic solar cells have attracted considerable interest due to their great potential for the production of flexible and large-area solar cells at relatively low costs and easy-processing fabrication properties [1–2]. The present work reports the effect of organic salt, tetrabutylammonium hexafluorophosphate (TBAPF6) doping on the performance of single layer bulk heterojunction organic solar cell with ITO/MEHPPV:PCBM/Al structure where indium tin oxide (ITO) was used as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor, (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor and aluminium (Al) as cathode. The active layer was prepared by spin coating technique. The organic solar cells were characterized by current-voltage measurements under illumination with a halogen projector lamp at 100 mW/cm2 using Keithley 237 source measurement unit. As shown in Fig.1, the device doped with TBAPF6 demonstrated a significant increment in the short circuit current density, Jsc and open circuit voltage, Voc as compared to the undoped device. Under illumination of a halogen projector lamp at 100 mW/cm2, the undoped device showed a Jsc of 0.54 µA/cm2, Voc of 0.24 V, and a fill factor (FF) of 16%. With the doping of TBAPF6, the Jsc increased almost ten times to 6.41 µA/cm2. Besides, the Voc also improved significantly from 0.24 V to 0.50 V. The significant improvement was attributed to the increase of built-in electric field caused by accumulation of ionic species at the electrode/active layer interfaces. Therefore, TBAPF6 doping has been shown to be a simple and cost-effective approach to increase the performance of organic solar cell.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":"96 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCINANO.2010.5700984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Organic solar cells have attracted considerable interest due to their great potential for the production of flexible and large-area solar cells at relatively low costs and easy-processing fabrication properties [1–2]. The present work reports the effect of organic salt, tetrabutylammonium hexafluorophosphate (TBAPF6) doping on the performance of single layer bulk heterojunction organic solar cell with ITO/MEHPPV:PCBM/Al structure where indium tin oxide (ITO) was used as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor, (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor and aluminium (Al) as cathode. The active layer was prepared by spin coating technique. The organic solar cells were characterized by current-voltage measurements under illumination with a halogen projector lamp at 100 mW/cm2 using Keithley 237 source measurement unit. As shown in Fig.1, the device doped with TBAPF6 demonstrated a significant increment in the short circuit current density, Jsc and open circuit voltage, Voc as compared to the undoped device. Under illumination of a halogen projector lamp at 100 mW/cm2, the undoped device showed a Jsc of 0.54 µA/cm2, Voc of 0.24 V, and a fill factor (FF) of 16%. With the doping of TBAPF6, the Jsc increased almost ten times to 6.41 µA/cm2. Besides, the Voc also improved significantly from 0.24 V to 0.50 V. The significant improvement was attributed to the increase of built-in electric field caused by accumulation of ionic species at the electrode/active layer interfaces. Therefore, TBAPF6 doping has been shown to be a simple and cost-effective approach to increase the performance of organic solar cell.