Natalia Cadavid-Aguilar, Jes'us Gonz'alez, B'arbara Guti'errez, Cesar A. Ipanaque-Zapata
{"title":"Effectual topological complexity","authors":"Natalia Cadavid-Aguilar, Jes'us Gonz'alez, B'arbara Guti'errez, Cesar A. Ipanaque-Zapata","doi":"10.1142/s1793525321500618","DOIUrl":null,"url":null,"abstract":"We introduce the effectual topological complexity (ETC) of a [Formula: see text]-space [Formula: see text]. This is a [Formula: see text]-equivariant homotopy invariant sitting in between the effective topological complexity of the pair [Formula: see text] and the (regular) topological complexity of the orbit space [Formula: see text]. We study ETC for spheres and surfaces with antipodal involution, obtaining a full computation in the case of the torus. This allows us to prove the vanishing of twice the nontrivial obstruction responsible for the fact that the topological complexity of the Klein bottle is [Formula: see text]. In addition, this gives a counterexample to the possibility — suggested in Pavešić’s work on the topological complexity of a map — that ETC of [Formula: see text] would agree with Farber’s [Formula: see text] whenever the projection map [Formula: see text] is finitely sheeted. We conjecture that ETC of spheres with antipodal action recasts the Hopf invariant one problem, and describe (conjecturally optimal) effectual motion planners.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"43 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525321500618","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We introduce the effectual topological complexity (ETC) of a [Formula: see text]-space [Formula: see text]. This is a [Formula: see text]-equivariant homotopy invariant sitting in between the effective topological complexity of the pair [Formula: see text] and the (regular) topological complexity of the orbit space [Formula: see text]. We study ETC for spheres and surfaces with antipodal involution, obtaining a full computation in the case of the torus. This allows us to prove the vanishing of twice the nontrivial obstruction responsible for the fact that the topological complexity of the Klein bottle is [Formula: see text]. In addition, this gives a counterexample to the possibility — suggested in Pavešić’s work on the topological complexity of a map — that ETC of [Formula: see text] would agree with Farber’s [Formula: see text] whenever the projection map [Formula: see text] is finitely sheeted. We conjecture that ETC of spheres with antipodal action recasts the Hopf invariant one problem, and describe (conjecturally optimal) effectual motion planners.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.