Effectual topological complexity

IF 0.5 3区 数学 Q3 MATHEMATICS
Natalia Cadavid-Aguilar, Jes'us Gonz'alez, B'arbara Guti'errez, Cesar A. Ipanaque-Zapata
{"title":"Effectual topological complexity","authors":"Natalia Cadavid-Aguilar, Jes'us Gonz'alez, B'arbara Guti'errez, Cesar A. Ipanaque-Zapata","doi":"10.1142/s1793525321500618","DOIUrl":null,"url":null,"abstract":"We introduce the effectual topological complexity (ETC) of a [Formula: see text]-space [Formula: see text]. This is a [Formula: see text]-equivariant homotopy invariant sitting in between the effective topological complexity of the pair [Formula: see text] and the (regular) topological complexity of the orbit space [Formula: see text]. We study ETC for spheres and surfaces with antipodal involution, obtaining a full computation in the case of the torus. This allows us to prove the vanishing of twice the nontrivial obstruction responsible for the fact that the topological complexity of the Klein bottle is [Formula: see text]. In addition, this gives a counterexample to the possibility — suggested in Pavešić’s work on the topological complexity of a map — that ETC of [Formula: see text] would agree with Farber’s [Formula: see text] whenever the projection map [Formula: see text] is finitely sheeted. We conjecture that ETC of spheres with antipodal action recasts the Hopf invariant one problem, and describe (conjecturally optimal) effectual motion planners.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"43 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525321500618","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce the effectual topological complexity (ETC) of a [Formula: see text]-space [Formula: see text]. This is a [Formula: see text]-equivariant homotopy invariant sitting in between the effective topological complexity of the pair [Formula: see text] and the (regular) topological complexity of the orbit space [Formula: see text]. We study ETC for spheres and surfaces with antipodal involution, obtaining a full computation in the case of the torus. This allows us to prove the vanishing of twice the nontrivial obstruction responsible for the fact that the topological complexity of the Klein bottle is [Formula: see text]. In addition, this gives a counterexample to the possibility — suggested in Pavešić’s work on the topological complexity of a map — that ETC of [Formula: see text] would agree with Farber’s [Formula: see text] whenever the projection map [Formula: see text] is finitely sheeted. We conjecture that ETC of spheres with antipodal action recasts the Hopf invariant one problem, and describe (conjecturally optimal) effectual motion planners.
有效拓扑复杂度
我们引入了一种[公式:见文]-空间[公式:见文]的有效拓扑复杂度(ETC)。这是一个[公式:见文]-等变同伦不变量,介于有效拓扑复杂度[公式:见文]和轨道空间(规则)拓扑复杂度[公式:见文]之间。我们研究了具有对映对合的球面和曲面的ETC,得到了环面情况下的完整计算。这使我们能够证明导致克莱因瓶的拓扑复杂度为[公式:见文本]的非平凡障碍的两次消失。此外,这给出了一个可能性的反例-在Pavešić关于地图拓扑复杂性的工作中提出-当投影地图[公式:见文本]是有限的时候,ETC[公式:见文本]将同意法伯的[公式:见文本]。我们推测具有对映作用的球体的ETC将Hopf不变量1问题进行了改造,并描述了(推测最优的)有效运动规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信