View-Invariant Loop Closure with Oriented Semantic Landmarks

J. Li, Karim Koreitem, D. Meger, Gregory Dudek
{"title":"View-Invariant Loop Closure with Oriented Semantic Landmarks","authors":"J. Li, Karim Koreitem, D. Meger, Gregory Dudek","doi":"10.1109/ICRA40945.2020.9196886","DOIUrl":null,"url":null,"abstract":"Recent work on semantic simultaneous localization and mapping (SLAM) have shown the utility of natural objects as landmarks for improving localization accuracy and robustness. In this paper we present a monocular semantic SLAM system that uses object identity and inter-object geometry for view-invariant loop detection and drift correction. Our system's ability to recognize an area of the scene even under large changes in viewing direction allows it to surpass the mapping accuracy of ORB-SLAM, which uses only local appearance-based features that are not robust to large viewpoint changes. Experiments on real indoor scenes show that our method achieves mean drift reduction of 70% when compared directly to ORB-SLAM. Additionally, we propose a method for object orientation estimation, where we leverage the tracked pose of a moving camera under the SLAM setting to overcome ambiguities caused by object symmetry. This allows our SLAM system to produce geometrically detailed semantic maps with object orientation, translation, and scale.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"30 1","pages":"7943-7949"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Recent work on semantic simultaneous localization and mapping (SLAM) have shown the utility of natural objects as landmarks for improving localization accuracy and robustness. In this paper we present a monocular semantic SLAM system that uses object identity and inter-object geometry for view-invariant loop detection and drift correction. Our system's ability to recognize an area of the scene even under large changes in viewing direction allows it to surpass the mapping accuracy of ORB-SLAM, which uses only local appearance-based features that are not robust to large viewpoint changes. Experiments on real indoor scenes show that our method achieves mean drift reduction of 70% when compared directly to ORB-SLAM. Additionally, we propose a method for object orientation estimation, where we leverage the tracked pose of a moving camera under the SLAM setting to overcome ambiguities caused by object symmetry. This allows our SLAM system to produce geometrically detailed semantic maps with object orientation, translation, and scale.
具有面向语义标志的视图不变循环闭包
最近在语义同步定位和映射(SLAM)方面的研究表明,将自然物体作为地标可以提高定位精度和鲁棒性。在本文中,我们提出了一个单目语义SLAM系统,该系统利用目标识别和目标间几何来进行视点不变环路检测和漂移校正。我们的系统即使在观看方向发生很大变化的情况下也能识别场景的一个区域,这使得它的测绘精度超过了ORB-SLAM的测绘精度,后者只使用基于局部外观的特征,对大的视点变化不具有鲁棒性。在真实室内场景下的实验表明,与ORB-SLAM相比,我们的方法平均漂移减少了70%。此外,我们还提出了一种物体方向估计方法,该方法利用SLAM设置下运动相机的跟踪姿态来克服由物体对称引起的模糊。这允许我们的SLAM系统生成具有对象方向、平移和比例的几何细节语义地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信