An Improved Adaptive ET-PHD Algorithm for Newborn Target Intensity

Cong Peng, Wenqiang Ye
{"title":"An Improved Adaptive ET-PHD Algorithm for Newborn Target Intensity","authors":"Cong Peng, Wenqiang Ye","doi":"10.1109/IAEAC.2018.8577717","DOIUrl":null,"url":null,"abstract":"In the case of unknown new target intensity, the traditional extended target probability hypothesis density (ET-PHD) filtering algorithm has a poor tracking effect. In this paper, an ET-PHD filtering algorithm based on measurement driven adaptive new target intensity is proposed. The new target intensity function is adaptively generated by the measured values obtained each time. The survival target and the new target are propagating in the prediction and updating stages and implemented under the Gauss mixture framework. The simulation results show that the proposed algorithm has a great advantage over the target number estimation and the OSPA distance compared with the traditional ET-GM-PHD filtering algorithm and improves the tracking performance of the extended target PHD filter.","PeriodicalId":6573,"journal":{"name":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"229 1","pages":"2137-2142"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2018.8577717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the case of unknown new target intensity, the traditional extended target probability hypothesis density (ET-PHD) filtering algorithm has a poor tracking effect. In this paper, an ET-PHD filtering algorithm based on measurement driven adaptive new target intensity is proposed. The new target intensity function is adaptively generated by the measured values obtained each time. The survival target and the new target are propagating in the prediction and updating stages and implemented under the Gauss mixture framework. The simulation results show that the proposed algorithm has a great advantage over the target number estimation and the OSPA distance compared with the traditional ET-GM-PHD filtering algorithm and improves the tracking performance of the extended target PHD filter.
一种改进的新生儿目标强度自适应ET-PHD算法
在新目标强度未知的情况下,传统的扩展目标概率假设密度(ET-PHD)滤波算法的跟踪效果较差。提出了一种基于测量驱动的自适应新目标强度的ET-PHD滤波算法。新的目标强度函数由每次获得的实测值自适应生成。生存目标和新目标在预测和更新阶段进行传播,并在高斯混合框架下实现。仿真结果表明,与传统的ET-GM-PHD滤波算法相比,该算法在目标数估计和OSPA距离方面具有很大的优势,并提高了扩展目标PHD滤波器的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信