Swapnil Mishra, James A. Scott, Daniel J. Laydon, Harrison Zhu, Neil M. Ferguson, Samir Bhatt, Seth Flaxman, Axel Gandy
{"title":"A COVID-19 model for local authorities of the United Kingdom","authors":"Swapnil Mishra, James A. Scott, Daniel J. Laydon, Harrison Zhu, Neil M. Ferguson, Samir Bhatt, Seth Flaxman, Axel Gandy","doi":"10.1111/rssa.12988","DOIUrl":null,"url":null,"abstract":"<p>We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the local authority level. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic based on renewal equations, with some important innovations, including a random walk modelling the reproduction number, incorporating information from different sources, including surveys to estimate the time-varying proportion of infections that lead to reported cases or deaths, and modelling the underlying infections as latent random variables. The model is designed to be updated daily using publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website: \nhttps://imperialcollegelondon.github.io/covid19local. The model is currently being used by the Scottish government to inform their interventions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssa.12988","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssa.12988","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22
Abstract
We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the local authority level. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic based on renewal equations, with some important innovations, including a random walk modelling the reproduction number, incorporating information from different sources, including surveys to estimate the time-varying proportion of infections that lead to reported cases or deaths, and modelling the underlying infections as latent random variables. The model is designed to be updated daily using publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website:
https://imperialcollegelondon.github.io/covid19local. The model is currently being used by the Scottish government to inform their interventions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.