A joint event extraction model based on RoBERTa-wwm-ext and gating mechanism

Baosheng Yin, Hua Wu, Weiyi Kong
{"title":"A joint event extraction model based on RoBERTa-wwm-ext and gating mechanism","authors":"Baosheng Yin, Hua Wu, Weiyi Kong","doi":"10.3233/jcm-226772","DOIUrl":null,"url":null,"abstract":"Event extraction, as one of the difficult tasks of information extraction, can quickly obtain valuable information from the massive information on the Internet. This paper proposes a joint event extraction model based on RoBERTa-wwm-ext and gating mechanism for document-level long text data, which not only uses the prior knowledge from event types and pre-trained language models, but also uses gated fusion module to aggregate information in the event argument extraction tasks to enhance entity representation and splices entity type embedding, thereby enhancing the correlation among events, arguments and argument roles in the text, and improving the recognition accuracy of the arguments of each event in the document. Finally, the effectiveness of the model is verified on the public dataset.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"72 1","pages":"2101-2112"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Event extraction, as one of the difficult tasks of information extraction, can quickly obtain valuable information from the massive information on the Internet. This paper proposes a joint event extraction model based on RoBERTa-wwm-ext and gating mechanism for document-level long text data, which not only uses the prior knowledge from event types and pre-trained language models, but also uses gated fusion module to aggregate information in the event argument extraction tasks to enhance entity representation and splices entity type embedding, thereby enhancing the correlation among events, arguments and argument roles in the text, and improving the recognition accuracy of the arguments of each event in the document. Finally, the effectiveness of the model is verified on the public dataset.
基于roberta - wm-ext和门控机制的联合事件提取模型
事件提取是信息提取的难点之一,它能从海量的网络信息中快速获取有价值的信息。本文提出了一种基于roberta - wm-ext和门控机制的文档级长文本数据联合事件提取模型,该模型不仅利用事件类型和预训练语言模型的先验知识,而且利用门控融合模块对事件参数提取任务中的信息进行聚合,增强实体表示,拼接实体类型嵌入,从而增强文本中事件、参数和参数角色之间的相关性。提高了文档中各事件参数的识别精度。最后,在公共数据集上验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信