Efficacy in vitro Antioxidation and in vivo Skin Barrier Recovery of Composition Containing Mineral-cation-phyto DNA Extracted from Aloe vera Adventitious Root
Dong-Myong Kim, Won-Jin Kim, Hyung-Kon Lee, Y. Kwon, Yeon-Mea Choi
{"title":"Efficacy in vitro Antioxidation and in vivo Skin Barrier Recovery of Composition Containing Mineral-cation-phyto DNA Extracted from Aloe vera Adventitious Root","authors":"Dong-Myong Kim, Won-Jin Kim, Hyung-Kon Lee, Y. Kwon, Yeon-Mea Choi","doi":"10.20402/ajbc.2023.0018","DOIUrl":null,"url":null,"abstract":"Purpose: This study aimed to extract phyto DNA from the adventitious root of Aloe vera and confirm its role in improving and regenerating skin and antiaging properties caused by blue light.Methods: Phyto DNA was extracted and a complex containing polylysine and Poly (amidoamine) was made. The antioxidant activity was confirmed using the DPPH method. The MTT test was performed on fibroblasts. The expression of SOD1, FLG, LOR, COL1A1, and MMP1 was measured using RT–PCR after blue light irradiation on HaCaT cells. The wound-healing test was performed. A phyto DNA complex cream formulation was created. Using this method, skin epidermal water loss was determined after human application.Results: At 0.85% of the cation polymer–phyto DNA complex concentration, 100% of fibroblasts survived. At 0.1% concentration, the antioxidant effect was 93%. After being exposed to blue light, only 40.4% of fibroblasts survived, but after being treated with a 100 μg/mL complex, 80.5% survived. At a mineral–cation-phyto DNA complex ratio of 10:1, the expression of skin barrier factors was highest. About 95.7% of HaCaT cells regenerated at 10:1 ratio of the mineral with phyto DNA complex in comparison to complex with only the minerals without phyto DNA.Conclusion: Phyto DNA from aloe vera’s adventitious root has no cytotoxicity, has excellent DPPH free radical scavenging ability, and can mitigate blue light cytotoxicity. It can improve skin barrier function by increasing the expression of barrier factors via a synergistic action in a specific ratio composition of phyto DNA, cationic polymer, and mineral complexes.","PeriodicalId":8508,"journal":{"name":"Asian Journal of Beauty and Cosmetology","volume":"359 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Beauty and Cosmetology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20402/ajbc.2023.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to extract phyto DNA from the adventitious root of Aloe vera and confirm its role in improving and regenerating skin and antiaging properties caused by blue light.Methods: Phyto DNA was extracted and a complex containing polylysine and Poly (amidoamine) was made. The antioxidant activity was confirmed using the DPPH method. The MTT test was performed on fibroblasts. The expression of SOD1, FLG, LOR, COL1A1, and MMP1 was measured using RT–PCR after blue light irradiation on HaCaT cells. The wound-healing test was performed. A phyto DNA complex cream formulation was created. Using this method, skin epidermal water loss was determined after human application.Results: At 0.85% of the cation polymer–phyto DNA complex concentration, 100% of fibroblasts survived. At 0.1% concentration, the antioxidant effect was 93%. After being exposed to blue light, only 40.4% of fibroblasts survived, but after being treated with a 100 μg/mL complex, 80.5% survived. At a mineral–cation-phyto DNA complex ratio of 10:1, the expression of skin barrier factors was highest. About 95.7% of HaCaT cells regenerated at 10:1 ratio of the mineral with phyto DNA complex in comparison to complex with only the minerals without phyto DNA.Conclusion: Phyto DNA from aloe vera’s adventitious root has no cytotoxicity, has excellent DPPH free radical scavenging ability, and can mitigate blue light cytotoxicity. It can improve skin barrier function by increasing the expression of barrier factors via a synergistic action in a specific ratio composition of phyto DNA, cationic polymer, and mineral complexes.