Random symmetric matrices: rank distribution and irreducibility of the characteristic polynomial

IF 0.6 3区 数学 Q3 MATHEMATICS
Asaf Ferber, Vishesh Jain, A. Sah, Mehtaab Sawhney
{"title":"Random symmetric matrices: rank distribution and irreducibility of the characteristic polynomial","authors":"Asaf Ferber, Vishesh Jain, A. Sah, Mehtaab Sawhney","doi":"10.1017/S0305004122000226","DOIUrl":null,"url":null,"abstract":"Abstract Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric \n$\\{\\pm 1\\}$\n -matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation in our work is establishing sharp estimates regarding the rank distribution of symmetric random \n$\\{\\pm 1\\}$\n -matrices over \n$\\mathbb{F}_p$\n for primes \n$2 < p \\leq \\exp(O(n^{1/4}))$\n . Previously, such estimates were available only for \n$p = o(n^{1/8})$\n . At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to control the contribution to singularity-type events of vectors in \n$\\mathbb{F}_p^{n}$\n with anticoncentration at least \n$1/p + \\Omega(1/p^2)$\n . Previously, inverse Littlewood–Offord-type results only allowed control over vectors with anticoncentration at least \n$C/p$\n for some large constant \n$C > 1$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"3 1","pages":"233 - 246"},"PeriodicalIF":0.6000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004122000226","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric $\{\pm 1\}$ -matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation in our work is establishing sharp estimates regarding the rank distribution of symmetric random $\{\pm 1\}$ -matrices over $\mathbb{F}_p$ for primes $2 < p \leq \exp(O(n^{1/4}))$ . Previously, such estimates were available only for $p = o(n^{1/8})$ . At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to control the contribution to singularity-type events of vectors in $\mathbb{F}_p^{n}$ with anticoncentration at least $1/p + \Omega(1/p^2)$ . Previously, inverse Littlewood–Offord-type results only allowed control over vectors with anticoncentration at least $C/p$ for some large constant $C > 1$ .
随机对称矩阵:秩分布和特征多项式的不可约性
摘要在扩展Riemann假设的条件下,我们证明了随机对称$\{\pm 1\}$ -矩阵的特征多项式在大概率下是不可约的。这解决了Eberhard在最近的工作中提出的一个问题。我们工作中的主要创新是建立关于对称随机$\{\pm 1\}$ -矩阵在$\mathbb{F}_p$上对质数$2 < p \leq \exp(O(n^{1/4}))$的秩分布的尖锐估计。以前,只有$p = o(n^{1/8})$才能得到这种估计。我们证明的核心是一种结合多个逆littlewood - ford型结果的方法,以控制$\mathbb{F}_p^{n}$中向量的奇异型事件的贡献,至少具有$1/p + \Omega(1/p^2)$的反集中。以前,逆littlewood - ford型结果只允许控制至少$C/p$对于一些大常数$C > 1$具有反浓度的向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信