Analysis of High Aspect Ratio Nanopores for Resistive Pulse Sensing Applications Through Numerical Simulations

J. Berkenbrock, D. Suzuki, G. Wells, M. Mail, T. Scherer, S. Achenbach
{"title":"Analysis of High Aspect Ratio Nanopores for Resistive Pulse Sensing Applications Through Numerical Simulations","authors":"J. Berkenbrock, D. Suzuki, G. Wells, M. Mail, T. Scherer, S. Achenbach","doi":"10.1109/NMDC50713.2021.9677508","DOIUrl":null,"url":null,"abstract":"Microfluidic devices form a class of microelectro mechanical systems used for the manipulation of fluid volumes in the order of micro-and nanoliters. These devices find application in health and environmental sciences for the detection of biomolecules. One long-standing detection principle is resistive pulse sensing (RPS) which has been adapted to the sub-micrometer scale. The key element in RPS is the nanopore by which the electric current is monitored. Pulses in the electric current are formed upon the translocation of particles through the nanopore. Different technologies can be used to create these nanopores, but the material and the aspect ratio impose limitations. In this study, the focused ion beam technology was used to create a high-aspect-ratio nanopore in a multi-layer-duo-material membrane. We used the data to develop a new 2D numerical model to study the pore geometry and investigate irregularities in its shape. Impedance frequency analysis results show the sensitivity of this method to differentiate among high similar geometries.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"36 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC50713.2021.9677508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic devices form a class of microelectro mechanical systems used for the manipulation of fluid volumes in the order of micro-and nanoliters. These devices find application in health and environmental sciences for the detection of biomolecules. One long-standing detection principle is resistive pulse sensing (RPS) which has been adapted to the sub-micrometer scale. The key element in RPS is the nanopore by which the electric current is monitored. Pulses in the electric current are formed upon the translocation of particles through the nanopore. Different technologies can be used to create these nanopores, but the material and the aspect ratio impose limitations. In this study, the focused ion beam technology was used to create a high-aspect-ratio nanopore in a multi-layer-duo-material membrane. We used the data to develop a new 2D numerical model to study the pore geometry and investigate irregularities in its shape. Impedance frequency analysis results show the sensitivity of this method to differentiate among high similar geometries.
高纵横比纳米孔电阻式脉冲传感应用的数值模拟分析
微流控装置形成了一类微机电系统,用于控制微升和纳升量级的流体体积。这些设备在健康和环境科学中用于检测生物分子。一种长期存在的检测原理是电阻脉冲传感(RPS),它已经适应了亚微米尺度。RPS的关键元件是监测电流的纳米孔。电流中的脉冲是在粒子通过纳米孔移位时形成的。不同的技术可以用来制造这些纳米孔,但材料和纵横比造成了限制。在这项研究中,聚焦离子束技术被用于在多层双材料膜上创建一个高纵横比的纳米孔。我们利用这些数据建立了一个新的二维数值模型来研究孔隙几何形状和其形状的不规则性。阻抗频率分析结果表明,该方法对高度相似的几何形状具有较高的分辨灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信