Mixed-hybrid and mixed-discontinuous Galerkin methods for linear dynamical elastic–viscoelastic composite structures

IF 3.8 2区 数学 Q1 MATHEMATICS
A. M'arquez, S. Meddahi
{"title":"Mixed-hybrid and mixed-discontinuous Galerkin methods for linear dynamical elastic–viscoelastic composite structures","authors":"A. M'arquez, S. Meddahi","doi":"10.1515/jnma-2020-0083","DOIUrl":null,"url":null,"abstract":"Abstract We introduce and analyze a stress-based formulation for Zener’s model in linear viscoelasticity. The method is aimed to tackle efficiently heterogeneous materials that admit purely elastic and viscoelastic parts in their composition.We write the mixed variational formulation of the problem in terms of a class of tensorial wave equation and obtain an energy estimate that guaranties the well-posedness of the problem through a standard Galerkin procedure. We propose and analyze mixed continuous and discontinuous Galerkin space discretizations of the problem and derive optimal error bounds for each semidiscrete solution in the corresponding energy norm. Finally, we discuss full discretization strategies for both Galerkin methods.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2020-0083","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We introduce and analyze a stress-based formulation for Zener’s model in linear viscoelasticity. The method is aimed to tackle efficiently heterogeneous materials that admit purely elastic and viscoelastic parts in their composition.We write the mixed variational formulation of the problem in terms of a class of tensorial wave equation and obtain an energy estimate that guaranties the well-posedness of the problem through a standard Galerkin procedure. We propose and analyze mixed continuous and discontinuous Galerkin space discretizations of the problem and derive optimal error bounds for each semidiscrete solution in the corresponding energy norm. Finally, we discuss full discretization strategies for both Galerkin methods.
线性动力弹性-粘弹性复合结构的混合-混合和混合不连续伽辽金方法
摘要介绍并分析了线性粘弹性齐纳模型的一种基于应力的公式。该方法旨在有效地处理非均质材料,其中包含纯弹性和粘弹性部件。我们用一类张量波动方程的形式写出了问题的混合变分形式,并通过标准伽辽金过程得到了保证问题适定性的能量估计。提出并分析了该问题的连续和不连续混合Galerkin空间离散化方法,并在相应的能量范数下导出了每个半离散解的最优误差界。最后,讨论了两种伽辽金方法的完全离散化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信