Acoustic waves in a turbulent giant molecular cloud taking into account the correlations of gravitational field

IF 0.7 Q3 PHYSICS, MULTIDISCIPLINARY
Îëåñÿ Ãîí÷àðà, ïðîñï. Ãàãàðiíà
{"title":"Acoustic waves in a turbulent giant molecular cloud taking into account the correlations of gravitational field","authors":"Îëåñÿ Ãîí÷àðà, ïðîñï. Ãàãàðiíà","doi":"10.30970/JPS.25.1903","DOIUrl":null,"url":null,"abstract":"A hydrodynamic model for the description of small acoustic oscillations in a turbulent giant molecular cloud is constructed by averaging the Euler equation over Reynolds, taking into account the turbulence of a self-consistent gravitational (cid:28)eld that has zero (cid:28)rst moment and nonzero second moment in equilibrium. It is shown that, in addition to the Reynolds turbulent stress tensor, the momentum (cid:29)ow tensor includes the second correlation moment of the gravitational (cid:28)eld strength, both potential and vortex, for which the time equation is obtained from the Einstein equations in non-relativistic approximation. After linearization, this equation is ∂ t (cid:104) g i g k (cid:105) = ( ∂ k v i + ∂ i v k − 2 ∂ l v l δ ik ) (cid:10) g 2 (cid:11) 0 / 6 , where ∂ t ant ∂ i are the time and spatial derivatives, v i is the mass velocity component, (cid:10) g 2 (cid:11) 0 is the square of a self-consistent gravitational (cid:28)eld strength equilibrium value. Two transverse and longitudinal branches of acoustic oscillations in a homogeneous isotropic cloud are obtained. Zeroing of the transverse oscillations velocity gives a limiting condition for the stability of the giant molecular cloud (cid:10) v 2 (cid:11) 0 − (cid:10) g 2 (cid:11) 0 / (8 πGρ 0 ) ≥ 0 , where (cid:10) v 2 (cid:11) 0 is the mean square turbulent velocity, G is the gravitational constant, ρ 0 is the equilibrium density value. Thus, the doubled energy density of the turbulent motion must be greater than the gravitational (cid:28)eld energy density. It is shown that the thermal motion does not a(cid:27)ect the stability of the system. For the spherical shape of the cloud, the radius of the giant molecular cloud is obtained, which is consistent with observational data.","PeriodicalId":43482,"journal":{"name":"Journal of Physical Studies","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/JPS.25.1903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

A hydrodynamic model for the description of small acoustic oscillations in a turbulent giant molecular cloud is constructed by averaging the Euler equation over Reynolds, taking into account the turbulence of a self-consistent gravitational (cid:28)eld that has zero (cid:28)rst moment and nonzero second moment in equilibrium. It is shown that, in addition to the Reynolds turbulent stress tensor, the momentum (cid:29)ow tensor includes the second correlation moment of the gravitational (cid:28)eld strength, both potential and vortex, for which the time equation is obtained from the Einstein equations in non-relativistic approximation. After linearization, this equation is ∂ t (cid:104) g i g k (cid:105) = ( ∂ k v i + ∂ i v k − 2 ∂ l v l δ ik ) (cid:10) g 2 (cid:11) 0 / 6 , where ∂ t ant ∂ i are the time and spatial derivatives, v i is the mass velocity component, (cid:10) g 2 (cid:11) 0 is the square of a self-consistent gravitational (cid:28)eld strength equilibrium value. Two transverse and longitudinal branches of acoustic oscillations in a homogeneous isotropic cloud are obtained. Zeroing of the transverse oscillations velocity gives a limiting condition for the stability of the giant molecular cloud (cid:10) v 2 (cid:11) 0 − (cid:10) g 2 (cid:11) 0 / (8 πGρ 0 ) ≥ 0 , where (cid:10) v 2 (cid:11) 0 is the mean square turbulent velocity, G is the gravitational constant, ρ 0 is the equilibrium density value. Thus, the doubled energy density of the turbulent motion must be greater than the gravitational (cid:28)eld energy density. It is shown that the thermal motion does not a(cid:27)ect the stability of the system. For the spherical shape of the cloud, the radius of the giant molecular cloud is obtained, which is consistent with observational data.
考虑引力场相关性的湍流巨分子云中的声波
考虑具有零(cid:28)静止矩和非零平衡第二矩的自一致引力场(cid:28)的湍流,通过对Reynolds上的欧拉方程进行平均,建立了描述湍流巨大分子云中小声波振荡的流体动力学模型。结果表明,除了雷诺湍流应力张量外,动量(cid:29)ow张量还包含引力场强(cid:28)的第二次相关矩,即势和涡,其时间方程由非相对论近似的爱因斯坦方程得到。线性化后,该方程为∂t (cid:104) g i g k (cid:105) =(∂k vi +∂iv k−2∂l v l δ ik) (cid:10) g 2 (cid:11) 0 / 6,其中∂t ant∂i是时间和空间导数,vi是质量速度分量,(cid:10) g 2 (cid:11) 0是自洽引力(cid:28)场强平衡值的平方。得到了均匀各向同性云中声振荡的两个横向和纵向分支。横向振荡速度归零给出了巨大分子云(cid:10) v2 (cid:11) 0 - (cid:10) g2 (cid:11) 0 / (8 πGρ 0)≥0的稳定性的极限条件,其中(cid:10) v2 (cid:11) 0为湍流速度的均方,g为引力常数,ρ 0为平衡密度值。因此,紊流运动的倍能量密度必须大于重力场(cid:28)的能量密度。结果表明,热运动不影响系统的稳定性。对于云的球形,得到了巨分子云的半径,与观测数据一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physical Studies
Journal of Physical Studies PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
20.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信