{"title":"A special class of continuous general linear methods","authors":"D. G. Yakubu, A. M. Kwami, M. Ahmed","doi":"10.1590/S1807-03022012000200003","DOIUrl":null,"url":null,"abstract":"We consider the construction of a class of numerical methods based on the general matrix inverse [14] which provides continuous interpolant for dense approximations (output). Their stability properties are similar to those for Runge-Kutta methods. These methods provide a unifying scope for many families of traditional methods. They are self-starting, to change stepsize during integration is not difficult when using them. We exploited these properties by first obtaining the direct block methods associated with the continuous schemes and then converting the block methods into uniformly A-stable high order general linear methods that are acceptable for solving stiff initial value problems. However, we will limit our formulation only for the step numbers k = 2, 3, 4. From our preliminary experiments we present some numerical results of some initial value problems in ordinary differential equations illustrating various features of the new class of methods. Mathematical subject classification: 65L05.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022012000200003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
We consider the construction of a class of numerical methods based on the general matrix inverse [14] which provides continuous interpolant for dense approximations (output). Their stability properties are similar to those for Runge-Kutta methods. These methods provide a unifying scope for many families of traditional methods. They are self-starting, to change stepsize during integration is not difficult when using them. We exploited these properties by first obtaining the direct block methods associated with the continuous schemes and then converting the block methods into uniformly A-stable high order general linear methods that are acceptable for solving stiff initial value problems. However, we will limit our formulation only for the step numbers k = 2, 3, 4. From our preliminary experiments we present some numerical results of some initial value problems in ordinary differential equations illustrating various features of the new class of methods. Mathematical subject classification: 65L05.
期刊介绍:
Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics).
The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.