A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space

IF 0.5 Q3 MATHEMATICS
L. Jolaoso, H. Abass, O. Mewomo
{"title":"A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space","authors":"L. Jolaoso, H. Abass, O. Mewomo","doi":"10.5817/AM2019-3-167","DOIUrl":null,"url":null,"abstract":"In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of δ-demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition ∑∞ n=1 βn‖xn−1 − xn‖ < +∞ on the inertial term. Finally, we provide some applications and numerical example to show the efficiency and accuracy of our algorithm. Our results improve and complement many other related results in the literature.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"55 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/AM2019-3-167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of δ-demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition ∑∞ n=1 βn‖xn−1 − xn‖ < +∞ on the inertial term. Finally, we provide some applications and numerical example to show the efficiency and accuracy of our algorithm. Our results improve and complement many other related results in the literature.
用惯性外推的黏度-近端梯度法求解Hilbert空间中的最小化问题
本文研究了带惯性外推项的近端梯度算法在求解经典最小化问题和求实Hilbert空间中δ-半对称映射不动点时的强收敛性。该算法的灵感来源于惯性近点算法和穆达菲的黏度近似法。在惯性项上无需施加求和条件∑∞n=1 βn‖xn−1—xn‖< +∞,即可得到强收敛结果。最后给出了一些应用和数值算例,说明了该算法的有效性和准确性。我们的结果改进和补充了文献中许多其他相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信