{"title":"High-performance computing without commitment: SC2IT: A cloud computing interface that makes computational science available to non-specialists","authors":"K. Jorissen, W. Johnson, F. Vila, J. Rehr","doi":"10.1109/eScience.2012.6404441","DOIUrl":null,"url":null,"abstract":"Computational work is a vital part of many scientific studies. In materials science research in particular, theoretical models are often needed to understand measurements. There is currently a double barrier that keeps a broad class of researchers from using state-of-the-art materials science codes: the software typically lacks user-friendliness, and the hardware requirements can demand a significant investment, e.g. the purchase of a Beowulf cluster. Scientific Cloud Computing has the potential to remove this barrier and make computational science accessible to a wider class of scientists who are not computational specialists. We present a set of interface tools, SC2IT, that enables seamless control of virtual compute clusters in the Amazon EC2 cloud and is designed to be embedded in user-friendly Java GUIs. We present applications of our Scientific Cloud Computing method to the materials science codes FEFF9, WIEN2k, and MEEP-mpi. SC2IT and the paradigm described here are applicable to other fields of research outside materials science within current Cloud Computing capability.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Computational work is a vital part of many scientific studies. In materials science research in particular, theoretical models are often needed to understand measurements. There is currently a double barrier that keeps a broad class of researchers from using state-of-the-art materials science codes: the software typically lacks user-friendliness, and the hardware requirements can demand a significant investment, e.g. the purchase of a Beowulf cluster. Scientific Cloud Computing has the potential to remove this barrier and make computational science accessible to a wider class of scientists who are not computational specialists. We present a set of interface tools, SC2IT, that enables seamless control of virtual compute clusters in the Amazon EC2 cloud and is designed to be embedded in user-friendly Java GUIs. We present applications of our Scientific Cloud Computing method to the materials science codes FEFF9, WIEN2k, and MEEP-mpi. SC2IT and the paradigm described here are applicable to other fields of research outside materials science within current Cloud Computing capability.