{"title":"Dichromatic Model Based Temporal Color Constancy for AC Light Sources","authors":"Jun-Sang Yoo, Jong-Ok Kim","doi":"10.1109/CVPR.2019.01261","DOIUrl":null,"url":null,"abstract":"Existing dichromatic color constancy approach commonly requires a number of spatial pixels which have high specularity. In this paper, we propose a novel approach to estimate the illuminant chromaticity of AC light source using high-speed camera. We found that the temporal observations of an image pixel at a fixed location distribute on an identical dichromatic plane. Instead of spatial pixels with high specularity, multiple temporal samples of a pixel are exploited to determine AC pixels for dichromatic plane estimation, whose pixel intensity is sinusoidally varying well. A dichromatic plane is calculated per each AC pixel, and illuminant chromaticity is determined by the intersection of dichromatic planes. From multiple dichromatic planes, an optimal illuminant is estimated with a novel MAP framework. It is shown that the proposed method outperforms both existing dichromatic based methods and temporal color constancy methods, irrespective of the amount of specularity.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"55 1","pages":"12321-12330"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.01261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Existing dichromatic color constancy approach commonly requires a number of spatial pixels which have high specularity. In this paper, we propose a novel approach to estimate the illuminant chromaticity of AC light source using high-speed camera. We found that the temporal observations of an image pixel at a fixed location distribute on an identical dichromatic plane. Instead of spatial pixels with high specularity, multiple temporal samples of a pixel are exploited to determine AC pixels for dichromatic plane estimation, whose pixel intensity is sinusoidally varying well. A dichromatic plane is calculated per each AC pixel, and illuminant chromaticity is determined by the intersection of dichromatic planes. From multiple dichromatic planes, an optimal illuminant is estimated with a novel MAP framework. It is shown that the proposed method outperforms both existing dichromatic based methods and temporal color constancy methods, irrespective of the amount of specularity.