Dirac and Plateau billiards in domains with corners

M. Gromov
{"title":"Dirac and Plateau billiards in domains with corners","authors":"M. Gromov","doi":"10.2478/s11533-013-0399-1","DOIUrl":null,"url":null,"abstract":"Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry, rather than topology of manifolds with their scalar curvatures bounded from below.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"25 1","pages":"1109-1156"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0399-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry, rather than topology of manifolds with their scalar curvatures bounded from below.
带角区域中的狄拉克和高原台球
在探索具有正标量曲率的奇异空间理论的过程中,我们研究了带角黎曼流形中的狄拉克算子和广义平台问题。利用这些,我们证明了光滑流形X上的c2 -光滑黎曼度量g的集合,使得尺度(X)≥κ(X),对于X上的所有连续函数κ,在黎曼度量的c0极限下是封闭的。除此之外,我们的进展是有限的,但我们提出了许多猜想。一直以来,我们都强调几何形状,而不是流形的拓扑结构,流形的标量曲率是从下面有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信