Polarity Trend Analysis of Public Sentiment on YouTube

Amar Krishna, Joseph Zambreno, Sandeep Krishnan
{"title":"Polarity Trend Analysis of Public Sentiment on YouTube","authors":"Amar Krishna, Joseph Zambreno, Sandeep Krishnan","doi":"10.31274/ETD-180810-146","DOIUrl":null,"url":null,"abstract":"For the past several years YouTube has been by far the largest user-driven online video provider. While many of these videos contain a significant number of user comments, little work has been done to date in extracting trends from these comments because of their low information consistency and quality. In this paper we perform sentiment analysis of the YouTube comments related to popular topics using machine learning techniques. We demonstrate that an analysis of the sentiments to identify their trends, seasonality and forecasts can provide a clear picture of the influence of real-world events on user sentiments.","PeriodicalId":87344,"journal":{"name":"Proceedings. ACM-SIGMOD International Conference on Management of Data","volume":"28 1","pages":"125-128"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM-SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31274/ETD-180810-146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

For the past several years YouTube has been by far the largest user-driven online video provider. While many of these videos contain a significant number of user comments, little work has been done to date in extracting trends from these comments because of their low information consistency and quality. In this paper we perform sentiment analysis of the YouTube comments related to popular topics using machine learning techniques. We demonstrate that an analysis of the sentiments to identify their trends, seasonality and forecasts can provide a clear picture of the influence of real-world events on user sentiments.
YouTube上公众情绪的极性趋势分析
在过去的几年里,YouTube一直是最大的用户驱动在线视频提供商。虽然这些视频中有许多包含大量的用户评论,但由于这些评论的信息一致性和质量较低,迄今为止在从这些评论中提取趋势方面所做的工作很少。在本文中,我们使用机器学习技术对YouTube上与热门话题相关的评论进行情感分析。我们证明,对情绪进行分析,以确定其趋势、季节性和预测,可以清楚地了解现实世界事件对用户情绪的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信