Adequacy for untyped translations of typed lambda -calculi

W. Phoa
{"title":"Adequacy for untyped translations of typed lambda -calculi","authors":"W. Phoa","doi":"10.1109/LICS.1993.287579","DOIUrl":null,"url":null,"abstract":"PCF is a simply typed lambda -calculus with ground types iota (natural numbers) and omicron (Booleans); there are no type variables and implies is the only type constructor. There is a natural way to translate any PCF term t into an untyped lambda -expression Lambda (t), such that if t is a program, i.e. a closed term of ground type (say integer type) and t implies /sub N/ n then Lambda (t) implies /sub beta / c/sub n/, where implies /sub N/ denotes call-by-name evaluation and c/sub n/ denotes the nth Church numeral. This paper contains a proof of the converse: if Lambda (t) implies /sub beta / c/sub n/ then t implies /sub N/ n; this tells us that the translation is adequate. The proof is semantic, and uses synthetic domain theory to reduce the question to the original Plotkin/Sazonov adequacy theorem for standard domain models of call-by-name PCF. This argument generalises easily to extensions of PCF which can be translated into the untyped lambda -calculus: we illustrate this by proving an analogous result for a 'second-order' PCF with type quantification. We also discuss how to extend the result to versions of PCF with recursive types and subtyping.<<ETX>>","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"25 1","pages":"287-295"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1993.287579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

PCF is a simply typed lambda -calculus with ground types iota (natural numbers) and omicron (Booleans); there are no type variables and implies is the only type constructor. There is a natural way to translate any PCF term t into an untyped lambda -expression Lambda (t), such that if t is a program, i.e. a closed term of ground type (say integer type) and t implies /sub N/ n then Lambda (t) implies /sub beta / c/sub n/, where implies /sub N/ denotes call-by-name evaluation and c/sub n/ denotes the nth Church numeral. This paper contains a proof of the converse: if Lambda (t) implies /sub beta / c/sub n/ then t implies /sub N/ n; this tells us that the translation is adequate. The proof is semantic, and uses synthetic domain theory to reduce the question to the original Plotkin/Sazonov adequacy theorem for standard domain models of call-by-name PCF. This argument generalises easily to extensions of PCF which can be translated into the untyped lambda -calculus: we illustrate this by proving an analogous result for a 'second-order' PCF with type quantification. We also discuss how to extend the result to versions of PCF with recursive types and subtyping.<>
适合类型化lambda -calculi的非类型化转换
PCF是一个简单类型的lambda -微积分,基本类型为iota(自然数)和omicron(布尔值);没有类型变量,并且暗示是唯一的类型构造函数。有一种自然的方法可以将任何PCF项t转换为一个无类型的lambda表达式lambda (t),这样,如果t是一个程序,即一个基类型的闭项(比如整数类型),t意味着/下标N/ N,那么lambda (t)意味着/下标β / c/下标N/,其中,暗示/下标N/表示按名称调用求值,c/下标N/表示第N个教会数字。本文给出了一个相反的证明:如果λ (t)暗示/下标/ c/下标n/,则t暗示/下标n/ n;这告诉我们,翻译是充分的。该证明是语义性的,并使用综合领域理论将问题简化为命名PCF标准领域模型的原始Plotkin/Sazonov充分性定理。这个论点很容易推广到PCF的扩展,它可以转化为无类型的λ演算:我们通过证明具有类型量化的“二阶”PCF的类似结果来说明这一点。我们还讨论了如何将结果扩展到具有递归类型和子类型的PCF版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信