On torsion in finitely presented groups

IF 0.1 Q4 MATHEMATICS
Maurice Chiodo
{"title":"On torsion in finitely presented groups","authors":"Maurice Chiodo","doi":"10.1515/gcc-2014-0001","DOIUrl":null,"url":null,"abstract":"Abstract. We describe an algorithm that, on input of a recursive presentation P of a group, outputs a recursive presentation of a torsion-free quotient of P, isomorphic to P whenever P is itself torsion-free. Using this, we show the existence of a universal finitely presented torsion-free group; one into which all finitely presented torsion-free groups embed (first proved by Belegradek). We apply our techniques to show that recognising embeddability of finitely presented groups is Π 2 0 $\\Pi ^{0}_{2}$ -hard, Σ 2 0 $\\Sigma ^{0}_{2}$ -hard, and lies in Σ 3 0 $\\Sigma ^{0}_{3}$ . We also show that the sets of orders of torsion elements of finitely presented groups are precisely the Σ 2 0 $\\Sigma ^{0}_{2}$ sets which are closed under taking factors.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"24 1","pages":"1 - 8"},"PeriodicalIF":0.1000,"publicationDate":"2011-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract. We describe an algorithm that, on input of a recursive presentation P of a group, outputs a recursive presentation of a torsion-free quotient of P, isomorphic to P whenever P is itself torsion-free. Using this, we show the existence of a universal finitely presented torsion-free group; one into which all finitely presented torsion-free groups embed (first proved by Belegradek). We apply our techniques to show that recognising embeddability of finitely presented groups is Π 2 0 $\Pi ^{0}_{2}$ -hard, Σ 2 0 $\Sigma ^{0}_{2}$ -hard, and lies in Σ 3 0 $\Sigma ^{0}_{3}$ . We also show that the sets of orders of torsion elements of finitely presented groups are precisely the Σ 2 0 $\Sigma ^{0}_{2}$ sets which are closed under taking factors.
有限表示群中的扭转
摘要我们描述了一种算法,在群的递归表示P的输入上,输出P的无扭商的递归表示,当P本身是无扭商时,它与P同构。利用这一点,我们证明了普遍有限呈现无扭群的存在性;所有有限呈现的无扭转群嵌入其中(首先由Belegradek证明)。我们应用我们的技术表明,识别有限呈现组的嵌入性是Π 20 $\Pi ^{0}_{2}$ -hard, Σ 20 $\Sigma ^{0}_{2}$ -hard,并且位于Σ 30 $\Sigma ^{0}_{3}$。我们还证明了有限呈现群的扭转元阶集正是在取因子作用下封闭的Σ 20 $\Sigma ^{0}_{2}$集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信