Canonical Correlation-based Model Selection for the Multilevel Factors

In Choi, Rui Lin, Y. Shin
{"title":"Canonical Correlation-based Model Selection for the Multilevel Factors","authors":"In Choi, Rui Lin, Y. Shin","doi":"10.2139/ssrn.3590109","DOIUrl":null,"url":null,"abstract":"We develop a novel approach based on the canonical correlation analysis to identify the number of global factors in the multilevel factor model. We propose the two consistent selection criteria, the canonical correlations difference (CCD) and the modified canonical correlations (MCC). Via Monte Carlo simulations, we show that CCD and MCC select the number of global factors correctly even in small samples, and they are robust to the presence of serially correlated and weakly cross-sectionally correlated idiosyncratic errors as well as the correlated local factors. Finally, we demonstrate the utility of our approach with an application to the multilevel asset pricing model for the stock return data in 12 industries in the U.S.","PeriodicalId":11485,"journal":{"name":"Econometrics: Applied Econometrics & Modeling eJournal","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometrics & Modeling eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3590109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We develop a novel approach based on the canonical correlation analysis to identify the number of global factors in the multilevel factor model. We propose the two consistent selection criteria, the canonical correlations difference (CCD) and the modified canonical correlations (MCC). Via Monte Carlo simulations, we show that CCD and MCC select the number of global factors correctly even in small samples, and they are robust to the presence of serially correlated and weakly cross-sectionally correlated idiosyncratic errors as well as the correlated local factors. Finally, we demonstrate the utility of our approach with an application to the multilevel asset pricing model for the stock return data in 12 industries in the U.S.
基于典型相关的多水平因子模型选择
我们开发了一种基于典型相关分析的新方法来识别多层次因素模型中的全局因素数量。我们提出了两个一致的选择标准:典型相关差异(CCD)和修正典型相关(MCC)。通过蒙特卡罗模拟,我们表明CCD和MCC即使在小样本中也能正确地选择全局因子的数量,并且它们对序列相关和弱横截面相关的特质误差以及相关局部因子的存在具有鲁棒性。最后,我们通过对美国12个行业股票收益数据的多层次资产定价模型的应用,证明了我们的方法的实用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信