Local Matching Networks for Engineering Diagram Search

Zhuyun Dai, Zhen Fan, Hafeezul Rahman, Jamie Callan
{"title":"Local Matching Networks for Engineering Diagram Search","authors":"Zhuyun Dai, Zhen Fan, Hafeezul Rahman, Jamie Callan","doi":"10.1145/3308558.3313500","DOIUrl":null,"url":null,"abstract":"Finding diagrams that contain a specific part or a similar part is important in many engineering tasks. In this search task, the query part is expected to match only a small region in a complex image. This paper investigates several local matching networks that explicitly model local region-to-region similarities. Deep convolutional neural networks extract local features and model local matching patterns. Spatial convolution is employed to cross-match local regions at different scale levels, addressing cases where the target part appears at a different scale, position, and/or angle. A gating network automatically learns region importance, removing noise from sparse areas and visual metadata in engineering diagrams. Experimental results show that local matching approaches are more effective for engineering diagram search than global matching approaches. Suppressing unimportant regions via the gating network enhances accuracy. Matching across different scales via spatial convolution substantially improves robustness to scale and rotation changes. A pipelined architecture efficiently searches a large collection of diagrams by using a simple local matching network to identify a small set of candidate images and a more sophisticated network with convolutional cross-scale matching to re-rank candidates.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Finding diagrams that contain a specific part or a similar part is important in many engineering tasks. In this search task, the query part is expected to match only a small region in a complex image. This paper investigates several local matching networks that explicitly model local region-to-region similarities. Deep convolutional neural networks extract local features and model local matching patterns. Spatial convolution is employed to cross-match local regions at different scale levels, addressing cases where the target part appears at a different scale, position, and/or angle. A gating network automatically learns region importance, removing noise from sparse areas and visual metadata in engineering diagrams. Experimental results show that local matching approaches are more effective for engineering diagram search than global matching approaches. Suppressing unimportant regions via the gating network enhances accuracy. Matching across different scales via spatial convolution substantially improves robustness to scale and rotation changes. A pipelined architecture efficiently searches a large collection of diagrams by using a simple local matching network to identify a small set of candidate images and a more sophisticated network with convolutional cross-scale matching to re-rank candidates.
工程图搜索的局部匹配网络
在许多工程任务中,查找包含特定部件或类似部件的图是很重要的。在这个搜索任务中,期望查询部分只匹配复杂图像中的一个小区域。本文研究了几种明确地模拟局部区域到区域相似性的局部匹配网络。深度卷积神经网络提取局部特征,对局部匹配模式进行建模。空间卷积用于在不同尺度上交叉匹配局部区域,解决目标部分在不同尺度、位置和/或角度出现的情况。门控网络自动学习区域重要性,去除工程图中稀疏区域的噪声和视觉元数据。实验结果表明,局部匹配方法在工程图搜索中比全局匹配方法更有效。通过门控网络抑制不重要的区域,提高了精度。通过空间卷积在不同尺度上进行匹配,大大提高了对尺度和旋转变化的鲁棒性。流水线架构通过使用简单的局部匹配网络来识别少量候选图像,使用更复杂的卷积跨尺度匹配网络来重新排列候选图像,从而有效地搜索大量图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信