Partial qualitative analysis of planar 𝓐Q-Riccati equations

IF 0.5 4区 数学 Q3 MATHEMATICS
B. Zalar, Smetanova Maribor Slovenia architecture, B. Ferčec, Yilei Tang, M. Mencinger, Jadranska Ljubljana Slovenia mechanics
{"title":"Partial qualitative analysis of planar 𝓐Q-Riccati equations","authors":"B. Zalar, Smetanova Maribor Slovenia architecture, B. Ferčec, Yilei Tang, M. Mencinger, Jadranska Ljubljana Slovenia mechanics","doi":"10.3336/gm.55.2.11","DOIUrl":null,"url":null,"abstract":"If we view the field of complex numbers as a 2-dimensional commutative real algebra, we can consider the differential equation z'=az2+bz+c as a particular case of 𝓐- Riccati equations z'=a · (z · z)+b · z+c where 𝓐=( ℝn,·) is a commutative, possibly nonassociative algebra, a,b,c∈𝓐 and z:I → 𝓐 is defined on some nontrivial real interval. In the case 𝓐=ℂ, the nature of (at most two) critical points can be described using purely algebraic conditions involving involution * of ℂ. In the present paper we study the critical points of 𝓛(π)- Riccati equations, where 𝓛(π) is the limit case of the so-called family of planar Lyapunov algebras, which characterize 2-dimensional homogeneous systems of quadratic ODEs with stable origin. The number of possible critical points is 1, 3 or ∞, depending on coefficients. The nature of critical points is also completely described. Finally, simultaneous stability of the origin is considered for homogeneous quadratic part corresponding to algebras 𝓛(θ).","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":"25 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.2.11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

If we view the field of complex numbers as a 2-dimensional commutative real algebra, we can consider the differential equation z'=az2+bz+c as a particular case of 𝓐- Riccati equations z'=a · (z · z)+b · z+c where 𝓐=( ℝn,·) is a commutative, possibly nonassociative algebra, a,b,c∈𝓐 and z:I → 𝓐 is defined on some nontrivial real interval. In the case 𝓐=ℂ, the nature of (at most two) critical points can be described using purely algebraic conditions involving involution * of ℂ. In the present paper we study the critical points of 𝓛(π)- Riccati equations, where 𝓛(π) is the limit case of the so-called family of planar Lyapunov algebras, which characterize 2-dimensional homogeneous systems of quadratic ODEs with stable origin. The number of possible critical points is 1, 3 or ∞, depending on coefficients. The nature of critical points is also completely described. Finally, simultaneous stability of the origin is considered for homogeneous quadratic part corresponding to algebras 𝓛(θ).
平面𝓐Q-Riccati方程的局部定性分析
如果我们把复数域看作一个二维可交换实代数,我们可以把微分方程z'=az2+bz+c看作是 -里卡蒂方程z'=a·(z·z)+b·z+c的一种特殊情况,其中 =(v, n,·)是一个可交换的,可能是非结合的代数,a,b,c∈,并且z:I→定义在某个非平凡实区间上。在=的情况下,(至多两个)临界点的性质可以用涉及的对合*的纯代数条件来描述。在本文中,我们研究了具有稳定原点的二次方程的二维齐次系统的极限情况下,所称平面Lyapunov代数族的极限情况下,所称平面Lyapunov代数族的临界点。根据系数的不同,可能的临界点的数量是1、3或∞。对临界点的性质也作了完整的描述。最后,考虑了对应于代数的齐次二次部分的原点的同时稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glasnik Matematicki
Glasnik Matematicki MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.80
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信