B. Zalar, Smetanova Maribor Slovenia architecture, B. Ferčec, Yilei Tang, M. Mencinger, Jadranska Ljubljana Slovenia mechanics
{"title":"Partial qualitative analysis of planar 𝓐Q-Riccati equations","authors":"B. Zalar, Smetanova Maribor Slovenia architecture, B. Ferčec, Yilei Tang, M. Mencinger, Jadranska Ljubljana Slovenia mechanics","doi":"10.3336/gm.55.2.11","DOIUrl":null,"url":null,"abstract":"If we view the field of complex numbers as a 2-dimensional commutative real algebra, we can consider the differential equation z'=az2+bz+c as a particular case of 𝓐- Riccati equations z'=a · (z · z)+b · z+c where 𝓐=( ℝn,·) is a commutative, possibly nonassociative algebra, a,b,c∈𝓐 and z:I → 𝓐 is defined on some nontrivial real interval. In the case 𝓐=ℂ, the nature of (at most two) critical points can be described using purely algebraic conditions involving involution * of ℂ. In the present paper we study the critical points of 𝓛(π)- Riccati equations, where 𝓛(π) is the limit case of the so-called family of planar Lyapunov algebras, which characterize 2-dimensional homogeneous systems of quadratic ODEs with stable origin. The number of possible critical points is 1, 3 or ∞, depending on coefficients. The nature of critical points is also completely described. Finally, simultaneous stability of the origin is considered for homogeneous quadratic part corresponding to algebras 𝓛(θ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
If we view the field of complex numbers as a 2-dimensional commutative real algebra, we can consider the differential equation z'=az2+bz+c as a particular case of 𝓐- Riccati equations z'=a · (z · z)+b · z+c where 𝓐=( ℝn,·) is a commutative, possibly nonassociative algebra, a,b,c∈𝓐 and z:I → 𝓐 is defined on some nontrivial real interval. In the case 𝓐=ℂ, the nature of (at most two) critical points can be described using purely algebraic conditions involving involution * of ℂ. In the present paper we study the critical points of 𝓛(π)- Riccati equations, where 𝓛(π) is the limit case of the so-called family of planar Lyapunov algebras, which characterize 2-dimensional homogeneous systems of quadratic ODEs with stable origin. The number of possible critical points is 1, 3 or ∞, depending on coefficients. The nature of critical points is also completely described. Finally, simultaneous stability of the origin is considered for homogeneous quadratic part corresponding to algebras 𝓛(θ).