Sampath Suranjan Salins, Shiva Kumar, Ritu Kiran Kartik, S. Reddy
{"title":"Numerical analysis-based performance prediction in a direct evaporative cooler used for building cooling","authors":"Sampath Suranjan Salins, Shiva Kumar, Ritu Kiran Kartik, S. Reddy","doi":"10.1080/19401493.2021.2025266","DOIUrl":null,"url":null,"abstract":"In the present performance parameters is determined for the varied operating conditions using mathematical modelling. Outlet humidity ratio, Dry bulb temperature (DBT), cooling efficiency and cooling effect have been predicted by varying the air velocities, inlet DBT, inlet relative humidity (RH) and pad thickness for three different wettability of Celdek packing. Predicted results revealed that cooling effect, saturation efficiency, ΔDBT and humidity ratio are found to be increasing with the increase in pad thickness and wettability of the material. An increase in the inlet air flow rate and RH resulted in a decrease in ΔDBT, humidity ratio and cooling efficiency. The maximum performance of ΔDBT, ΔRH, saturation efficiency and cooling effects have been observed for Celdek 7090 and are equal to 6°C, 55%, 90% and 7000 Watts for the thickness of 0.3 m, wettability of 630 m2/m3. Wettability of 630 m2/m3 & thickness 0.3 m gave maximum performance.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"59 1","pages":"237 - 250"},"PeriodicalIF":2.2000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2021.2025266","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present performance parameters is determined for the varied operating conditions using mathematical modelling. Outlet humidity ratio, Dry bulb temperature (DBT), cooling efficiency and cooling effect have been predicted by varying the air velocities, inlet DBT, inlet relative humidity (RH) and pad thickness for three different wettability of Celdek packing. Predicted results revealed that cooling effect, saturation efficiency, ΔDBT and humidity ratio are found to be increasing with the increase in pad thickness and wettability of the material. An increase in the inlet air flow rate and RH resulted in a decrease in ΔDBT, humidity ratio and cooling efficiency. The maximum performance of ΔDBT, ΔRH, saturation efficiency and cooling effects have been observed for Celdek 7090 and are equal to 6°C, 55%, 90% and 7000 Watts for the thickness of 0.3 m, wettability of 630 m2/m3. Wettability of 630 m2/m3 & thickness 0.3 m gave maximum performance.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.